uniVersI/O



Tiedeviikko 3+4/11

Tiedeviikko laahaa pahasti aikaansa jäljessä, joten on aika korjata tilanne. Tässä ensimmäiseksi viikot kolme ja neljä:

Kaukaisin galaksi

Vuoden ensimmäinen superlatiivi on kaukaisin galaksi. Tutkijat ovat löytäneet galaksin UDFj-39546284 (etukirjaimet tarkoittavat Hubble -avaruusteleskoopin pitkän valotusajan kuvia: Ultra Deep Field), joka on meistä 13.2 miljardin valovuoden päässä. Eli sen valo lähti liikkeelle, kun maailmankaikkeus oli vain 480 miljoonan vuoden ikäinen. Tutkijat arvelevat ensimmäisten galaksien muodostuneen maailmankaikkeuteen, kun se oli 200-300 miljoonan vuoden ikäinen, joten juuri havaittu galaksi ulottuu melkein ensimmäisten galaksien joukkoon. UDFj-39546284 on pieni galaksi, noin sata kertaa pienempi kuin Linnunrata, sisältäen pääosin sinisiä eli nuoria ja kuumia tähtiä. Galaksin etäisyys määriteltiin ns. poissulkumenetelmällä, jossa galaksin kuumien tähtien säteilemän ultraviolettisäteilyn absorptio meidän ja galaksin välisessä vetypilvessä siirtyy maailmankaikkeuden laajenemisen johdosta pidemmille aallonpituuksille. Ultraviolettisäteily on tarpeeksi energeettistä säteilyä, jotta se voi ionisoida vetyä eli potkaista elektronin pois vetyatomin kuorelta. Törmätessään vetypilveen ultraviolettisäteily jää meiltä kokonaan havaitsematta sen jäädessä ionisoimaan vetypilven vetyä. Toisaalta galaksista säteilevä optinen säteily ei kykene ionisoimaan vetyä ja pääsee kulkemaan esteettä Maahan saakka. Maailmankaikkeuden laajenemisen johdosta säteilyn aallonpituus pitenee eli punasiirtyy, joten myös UDFj-39546284:n säteily, mukanaan ultraviolettisäteilyn absorptioalue, punasiirtyy. Havaitsemalla millä aallonpituuskaistalla galaksi ei näy saadaan karkea arvio galaksin punasiirtymästä, josta voidaan vastaavasti laskea galaksin etäisyys. Tutkimusryhmän tekemissä aikaisemmissa tutkimuksessa löydettiin 47 galaksia hieman lähempää, noin 13 miljardin valovuoden päästä. Juuri löydetyn galaksin ja aikaisemmin havaittujen galaksin välinen aikaero on kuitenkin maailmankaikkeuden mittapuulla mitattuna pieni, muutama sata miljoonaa vuotta, joten galaksien kehityksessä tapahtui tänä aikajaksona suuri harppaus. Ensimmäisen 170 miljoonan vuoden aikana tähtisyntynopeus kymmenkertaistui ja sitä seuraavan 130 miljoonan vuoden aikana se kymmenkertaistui uudellen. Tulos vahvistaa tutkijoiden käsitystä galaksien muodostumisesta maailmankaikkeudessa, missä galaksit kasvavat ja törmäilevät toisiinsa pimeän aineen vaikutuksen alaisena.

Tieteellinen artikkeli

Kosminen röntgentaustasäteily

Credit: NASA/Goddard Space Flight Center

 

Kun on puhe kosmisesta taustasäteilystä, mieleen juolahtaa ensimmäisenä mikroaaltotaustasäteily, mutta maailmankaikkeus hehkuu myös muilla aallonpituusalueilla, esimerkiksi röntgenalueella. Suurin osa kosmisesta röntgentaustasäteilystä ajatellaan syntyvän aktiivisten galaksien keskustoissa majailevien supermassiivisten mustien aukkojen ympäriltä. Ongelmana on kuitenkin ollut, että aktiivisia galakseja ei ole tähän mennessä havaittu tarpeeksi, jotta koko röntgentaustasäteily pystyttäisiin selittämään. Uuden tutkimuksen mukaan meiltä onkin jäänyt laskematta viidesosa kaikista aktiivisista galakseista. Käyttäen NASA:n Swift -röntgesatelliittia tutkijat ovat löytäneet uuden aktiivisten galaksien joukon, joiden säteily on erittäin himmeää. Aktiivisissa galakseissa materiaa putoaa hiljalleen supermassiiviseen mustaan aukkoon, josta osa linkoutuu magneettikenttien vaikutuksesta pois mustan aukon navoilta muodostaen erittäin energeettiset hiukkassuihkut samaan tapaan kuin mikrokvasaareissa (kts. mustien aukkojen olemisen sietämätön keveys). Mikäli katsomme enemmän tai vähemmän suoraan hiukkassuihkua päin, kutsumme kohdetta kvasaariksi tai blasaariksi, jotka ovat maailmankaikkeuden kirkkaimpia kohteita. Sitä vastoin jos katsomme galaksia sivusta, peittää galaksin kiekko keskustan supermassiivisen mustan aukon ja säteily himmenee matkalla galaksin reunalle huomattavasti. Ultravioletti-, optinen ja ns. pehmeä röntgensäteily (noin 1 keV tai 500 kertaa näkyvää valoa energisempi) absorboituu kokonaan galaksin aineeseen. Infrapunasäteily pääsee kulkemaan galaksin läpi, mutta se saattaa sekoittua galaksin tähtiensyntyalueista säteilevään infrapunasäteilyyn. Niinpä ainoa galaksin läpäisevä supermassiivisen mustan aukon säteily on ns. kova röntgensäteily (noin 20 keV tai 10000 kertaa näkyvää valoa energisempi). Swiftin koko taivaan röntgenkartasta tutkijat valitsivat 199 aktiivista galaksia, jotka eivät sijainneet liian lähellä Linnunradan tasoa, ja joilla ei ollut hiukkassuihkuja näkyvillä. Näistä galakseista tutkijat päätyivät yhdeksään galaksiin, jotka kuuluvat uuteen aktiivisten galaksien joukkoon. Jopa Swiftillä oli ongelmia havaita näitä yhdeksää galaksia, joten todennäköisesti siltä jää suurinosa galakseista tästä erittäin himmästä aktiivisten galaksien ryhmästä havaitsematta. Ottaen satelliitin havaitsemisherkkyyden huomioon, tutkijat arviovat uuden galaksiryhmän sisältävän 20-30 prosenttia kaikista aktiivisista galakseista. Ensimmäistä kertaa tutkijat pystyivät myös mittaamaan näiden galaksien röntgenspektrin, jonka perusteella galaksit näyttäisivät muodostavan kosmisen röntgentaustasäteilyn huipun (kts. kuva yllä). Uusi löytö tukee teoriaa röntgentaustasäteilyn synnystä, jonka mukaan se on peräisin himmeistä, galaksin suojissa piileskelevistä supermassiivisista mustista aukoista, kun maailmankaikkeus oli noin seitsemän miljardin vuoden ikäinen.

Tieteellinen artikkeli

Askel kohti kvanttitietokoneita: 10 miljardin hiukkasparin kvanttilomittuminen

Tutkijat ovat onnistuneet kvanttilomittamaan 10 miljardia hiukkasta kerralla menetelmällä, joka käyttää fosfori-rikastettua piitä, mikro- ja radioaaltopulssia. Tutkijat onnistuivat kvanttilomittamaan 98% kaikista mahdollisista hiukkaspareista, ja vaikka lomittuneiden hiukkasten hallitseminen on vielä hyvin rajallista, on hiukkasten massalomittuminen askel kohti kvanttitietokoneita. Koejärjestely sisälsi piikuution rikastettuna fosfori-ioneilla, jossa fosforiatomin ydin ja yksi sen elektroneista (joka muodostaa sidoksen piiatomin kanssa) muodosti kvanttilomitettavan hiukkasparin. Puolijohteeseen, kuten piihin, sekoitettuna fosforiytimen ja elektronin kvanttilomittuminen saadaan kestämään sekunteja kerrallaan verrattuna muihin materiaaleihin, joissa kvanttilomittuminen hajoaa sekunnin tuhannesosassa tai lyhyemmässä ajassa. Tutkijat tarvitsivatkin ylimääräistä aikaa saadakseen kaikki hiukkaset käyttäytymään samalla tavalla. Mikroaaltopulssilla hiukkasten kvanttimekaaninen aaltofunktio saadaan sopivaan tilaan, jotta sitä seuraava radioaaltopulssi pystyy kvanttilomittamaan hiukkaset. Jotta kvanttilomittuneita hiukkasia voitaisiin käyttää kvanttitietokoneiden kubitteina, täytyisi niitä pystyä vielä lukemaan ja kirjoittamaan. 10 miljardia hiukkasta tarjoaisi kuitenkin jo mukavat 2.5 gigabittiä muistia, joten tutkimus on ehdottomasti askel eteenpäin kohti kvanttitietokoneita.

Tieteellinen artikkeli

Viikon kuva

Tieteellisen yhteistyön maailman kartta (hieman suurempi kuva täällä).

Credit: O. Beauchesne

 

Advertisements

Trackbacks & Pingbacks

  1. Poimintoja, osa II « uniVersI/O pingbacked : 5 years, 10 months ago

Kommentit



Vastaa

Täytä tietosi alle tai klikkaa kuvaketta kirjautuaksesi sisään:

WordPress.com-logo

Olet kommentoimassa WordPress.com -tilin nimissä. Log Out / Muuta )

Twitter-kuva

Olet kommentoimassa Twitter -tilin nimissä. Log Out / Muuta )

Facebook-kuva

Olet kommentoimassa Facebook -tilin nimissä. Log Out / Muuta )

Google+ photo

Olet kommentoimassa Google+ -tilin nimissä. Log Out / Muuta )

Muodostetaan yhteyttä palveluun %s

%d bloggers like this: