uniVersI/O



Tiedeviikko 12+13/11

Kuten olette varmaan huomanneet, blogia on viime aikoina päivitetty harvakseltaan. Tämä johtuu siitä, että minulla on tällä hetkellä kädet täynnä töitä väitöskirjan parissa, ja todennäköisesti tämä trendi jatkuu vielä tulevaisuudessakin. Toivon mukaan tiedeuutiset maistuvat vielä, vaikka niitä tuleekin tänne hieman hitaammalla tahdilla.

Asteroidien louhinta ja Maan ulkopuolinen älyllinen elämä

Maan ulkopuolisen älyllisen elämän etsiminen on yksi tieteen mielenkiintoisimmista kysymyksistä, mutta menetelmät sen toteuttamiseen ovat toistaiseksi lähes olemattomat. Tähän mennessä ainoa keino on ollut etsiä keinotekoisia radiosignaaleja lähimmistä tähtijärjestelmistä, mutta 50 vuoden ahkeran havaitsemisen jälkeen olemme vieläkin tyhjin käsin. Uusien eksoplaneettahavaintojen myötä Maan ulkopuolisen elämän etsiminen on kuitenkin saanut lisää potkua, erityisesti eksoplaneettojen kaasukehien havaitsemisen ansiosta. Mikäli havaitsemme planeetan kaasukehän koostumuksen olevan erilainen kuin pelkkä planetaarinen kemia antaisi olettaa, sisältäen etenkin runsaasti jotain biogeenistä kaasua, esim. happea, elämän esiintyminen planeetan pinnalla on tällöin todennäköistä (kts. lisää täältä). Tutkijat ovat ehdottaneet myös muita tapoja, joilla vieraan sivilisaation olemassaolo saataisiin selville, esimerkiksi hieman villimpi idea on havaita teknologisesti meitä kehittyneempien sivilisaatioiden tähtien kutittamista. Nyt tutkijat ovat ehdottaneet, että älykkään sivilisaation laajamittainen asteroidien louhinta olisi havaittavissa sivilisaation asuttaman tähtijärjestelmän pölykiekossa. Tähtien ympärillä olevat pölykiekot koostuvat nimensä mukaisesti pölystä sekä suuremmista kappaleista läpimitaltaan aina satoihin kilometreihin saakka. Pölykiekkoa hallitsee tähden painovoiman ja säteilypaineen välinen tasapaino. Siinä missä säteilypaine puhaltaa pienimmät hiukkaset pois tähtijärjestelmästä, suurempien kappaleiden törmäykset synnyttävät niitä lisää. Tasapainotilassa hiukkasten kokojakauma pölykiekossa seuraa potenssilakia. Miksi asteroidien louhinta sitten kiinnostaisi avaruusmatkailevaa sivilisaatiota? Jos kyseessä on teknologisesti meitä edellä oleva sivilisaatio, on todennäköistä, että se on elänyt meitä pidempään kotiplaneetallaan ja käyttänyt loppuun planeetan saatavilla olevat mineraalit. Tutkijat arvelevat myös ihmiskunnan siirtyvän ennen pitkää asteroidien louhintaan mineraalien huvetessa olemattomiin Maassa, kunhan se on ensin ekonomisesti järkevää. Laajamittainen asteroidien louhinta vaikuttaisi pölykiekkoon kolmella eri tavalla. Ensimmäiseksi pölykiekon kemiallinen koostumus muuttuisi, koska louhinta poistaisi suuria määriä louhittavia aineita pölykiekosta. Verrattaessa pölykiekon kemiallista koostumusta tähden kemialliseen koostumukseen (joiden pitäisi olla suurin piirtein samat, koska tähti sekä sitä ympäröivä pölykiekko ovat muodostuneet samasta kaasu- ja pölypilvestä) voidaan havaita mahdollisesta louhinnasta aiheutuvat erot näiden välillä. Toiseksi pölykiekon kappaleiden kokojakauma ei noudattaisi enää tähden painovoiman ja säteilypaineen tasapainon aiheuttamaa potenssilakia louhinnan vähentäessä suurten kappaleiden ja lisätessä pienten kappaleiden määrää pölykiekossa. Kolmanneksi louhinta muuttaisi pölykiekon lämpöjakaumaa, koska asteroidien poraaminen ja kaivaminen synnyttäisi kuumaa pölyä, joka kuitenkin nopeasti jäähtyisi avaruudessa minuuttien aikaskaalassa. Niinpä tietyllä aallonpituudella voisi havaita säteilyvaihteluita, jotka olisivat verrattavissa kuuman porauspölyn jäähtymisen aikaskaalaan. Olisiko asteroidien louhimista siis mahdollista havaita nykyteknologialla? Tutkijat päätyvät artikkelissaan tulokseen, että ainoastaan jos louhinta on mittakaavaltaan teollisuusluokkaa, se voisi aiheuttaa havaittavia muutoksia tähden pölykiekkoon. Mikäli epäilyttävän näköisiä pölykiekkoja havaittaisiin, yllämainitut kohdat eivät vielä kuitenkaan yksin riittäisi vieraan sivilisaation olemassaolon todistamiseen, mutta ne antaisivat astrobiologeille mahdollisia tähtijärjestelmäkandidaatteja lisätutkimuksia varten.

Tieteellinen artikkeli

Universumin pimeä virtaus

Credit: universe-review.ca

Universumin pimeä virtaus on teoria, jonka mukaan näkyvään maailmankaikkeuteemme vaikuttaa jokin voima sen ulkopuolelta, jota emme voi itse suoraan havaita, mutta jonka toissijaisia vaikutuksia näemme galaksijoukkojen poikkeavana liikkeenä. Yleensä ottaen galaksit loittonevat toisistaan maailmankaikkeuden laajetessa, mutta galakseilla on myös nk. ominaisliike, joka syntyy niiden painovoiman vuorovaikutuksesta lähiympäristön galaksien kanssa. Esimerkiksi Linnunrata ja Andromeda ovat törmäyskurssilla toistensa kanssa, vaikka maailmankaikkeus niiden välissä kokoajan laajeneekin. Niinpä mikäli haluat tutkia maailmankaikkeuden liikettä suuressa mittakaavassa, on parempi keskittyä havaitsemaan suuria määriä kohteita kerralla, joilloin galaksien ominaisliikkeet keskiarvoistuvat pois jättäen jäljelle kaikkien galaksien ja galaksijoukkojen yhtenäisen liikkeen johonkin suuntaan. Mikäli maailmankaikkeuden laajeneminen galaksien ominaisliikkeen lisäksi on ainut galakseihin vaikuttava voima, pitäisi niiden liikkua silloin yhtäläisesti joka suuntaan. Vuonna 2008 tutkijat kuitenkin havaitsivat galaksijoukkojen liikkuvan tiettyyn suuntaan kohti 20 asteen laajuista taustataivaan aluetta Kentaurin ja Purjeen tähdistössä, mikä ei ole selitettävissä pelkästään galaksijoukkojen ominaisliikkeellä. Samaan tapaan kuin pimeän aineen ja pimeän energian nimeämisessä, tuntemattomista tekijöistä johtuva galaksijoukkojen liike sai nimekseen pimeä virtaus. Tutkijat arvelivat, että pimeä virtaus saattaa johtua valtavasta massakeskittymästä näkyvän maailmankaikkeuden ulkopuolella, joka vetäisi galaksijoukkoja puoleensa. Tämä voisi olla mahdollista, jos maailmankaikkeus sisälsi massakeskittymiä jo ennen inflaatiota. Tämä teoria kuitenkin sotii nykyistä maailmankaikkeuden evoluutioteoriaa (nimeltään ΛCDM) vastaan. Vuoden 2008 tutkimuksessa käytettiin hyväksi Sunyaevin-Zel’dovitchin vaikutusta, jossa galaksijoukkojen kuumat elektronit sirottavat mikroaaltotaustasäteilyn fotoneja luoden havaittuun taustasäteilykarttaan epätasaisuuksia. Havaitsemalla näitä epätasaisuuksia voidaan galaksijoukkojen liike määrittää. Nyt uusi tutkimus haastaa nämä havainnot tutkimalla suuria määriä yksittäisiä kohteita, tyypin 1a supernovia, ja kuinka niiden ominaisliike sopisi maailmankaikkeuteen, joka sisältää pimeän virtauksen. Tutkimuksen mukaan vuoden 2008 tulos pystyttiin toistamaan, mutta ainoastaan pienillä punasiirtymän arvoilla. Tämän lisäksi vuoden 2008 tutkimuksen mukaan pimeän virtauksen nopeus olisi 600 km/s, kun taas uuden tutkimuksen mukaan supernovista saadut havainnot sopivat malliin, jossa pimeän virtauksen nopeus olisi 180 km/s, mikä taas on lähellä maailmankaikkeuden laajenemisesta saatua nopeutta 170 km/s. Niin tai näin, on aina hyvä muistaa tieteen nyrkkisääntö numero yksi: extraordinary claims require extraordinary evidence. Tässäkin tapauksessa lisäaineisto olisi paikallaan.

Tieteellinen artikkeli

Tähti teekupissa

Tähtitieteilijät ovat löytäneet kylmimmän koskaan havaitun tähden, jonka lämpötila on noin sata astetta (370 Kelviniä), vastaten kiehuvan veden lämpötilaa. Löytö hämärtää rajan kylmien ja pienten tähtien sekä kuumien ja suurten planeettojen välillä. Kyseinen tähti, CFBDSIR 1458+10B, sijaitsee kaksoistähtijärjestelmässä noin 75 valovuoden päässä Maasta. Kaksoistähden molemmat komponentit ovat ruskeita kääpiöitä, jotka ovat ns. epäonnistuneita tähtiä, joilla ei ole tarpeeksi massaa, jotta ydinreaktiot tähden keskustassa käynnistyisivät. Vaikka ruskeiden kääpiöiden olemassaolo ennustettiin jo monta vuosikymmentä sitten, ensimmäinen ruskea kääpiö havaittiin vasta vuonna 1995. Samana vuonna havaittiin myös ensimmäinen eksoplaneetta, joka oli kaasujättiläinen tai ns. kuuma jupiter kiertämässä emotähteään. Himmeimmät ruskeat kääpiöt, nimeltään T-kääpiöt, joiden lämpötila keikkuu 600-1400 Kelvinin välillä, toimivat laboratoriona myös massiivisten eksoplaneettojen tutkimiselle. Toisin kuin eksoplaneetatoilla, ruskeiden kääpiöiden lähistöllä ei usein sijaitse kirkasta tähteä, joka lähes tukahduttaa himmeämmästä kohteesta tulevan säteilyn omalla kirkkaalla säteilyllään. Vaikka ruskeilla kääpiöillä hädin tuskin lämmittäisi pitsan, tutkijat ovat ennustaneet niiden kaasukehissä tapahtuvan mielenkiintoisia sääilmiöitä (tai mielenkiintoisia ainakin tähdistä puhuttaessa), nimittäin vedestä koostuvia pilviä; niitä samoja haituvia, joita tämänkin planeetan ilmakehässä leijailee.

Tieteellinen artikkeli

Viikon kuva (1): Avaruusameeba vai Tycho supernovajäänne?

Chandra röntgenteleskoopin ottama kuva Tycho supernovajäänteestä (punainen väri vastaa matalaenergisempiä röntgenfotoneita kuin sininen väri). Supernovajäänteen oikealla alareunassa on näkyvillä sinisiä, eli hyvin korkeaenergisiä röntgenfotoneja säteileviä raitoja, joita ei olla tähän mennessä koskaan vielä havaittu supernovajäänteistä. Nämä ”röntgenraidat” auttavat tutkijoita selvittämään kuinka kosmiset säteet syntyvät supernovajäänteissä.

Credit: NASA/CXC/Rutgers/K.Eriksen et al.

Viikon kuva (2): Syzygy

NASAn SDO-luotaimen ottama kuva auringonpimennyksestä, jossa luotaimen ja Auringon välissä on Maa. Rosoinen pinta alareunassa johtuu Maan ilmakehästä, jonka tiheydenvaihtelut päästävät Auringon säteilyn paikoittain läpi.

Credit: NASA/SDO

Advertisements

Trackbacks & Pingbacks

Kommentit

  1. Ehdottomasti hyvät tiedeuutiset maistuvat vaikka tulevatkin harvemmin. Hyvää kannattaa odottaa. Hienoa että jaksat kirjoittaa tälläisiä mielenkiintoisia artikkeleja.

    Päiväys: 6 years, 1 month ago


Vastaa

Täytä tietosi alle tai klikkaa kuvaketta kirjautuaksesi sisään:

WordPress.com-logo

Olet kommentoimassa WordPress.com -tilin nimissä. Log Out / Muuta )

Twitter-kuva

Olet kommentoimassa Twitter -tilin nimissä. Log Out / Muuta )

Facebook-kuva

Olet kommentoimassa Facebook -tilin nimissä. Log Out / Muuta )

Google+ photo

Olet kommentoimassa Google+ -tilin nimissä. Log Out / Muuta )

Muodostetaan yhteyttä palveluun %s

%d bloggers like this: