uniVersI/O



Tiedeviikko 14+15/11

Supermassiivisen mustan aukon lounas

Credit: NASA/CXC/M.Weiss

28. päivä maaliskuuta Swift -röntgensatelliitin Burst Alert Telescope -ilmaisin havaitsi voimakkaan röntgenpurkauksen, mikä alkuun näytti aivan tavalliselta gammasädepurkauksen jälkihehkulta, ja sille annettiinkin nimi GRB 110328A. Gammasädepurkaus syntyy, kun hyvin massiivinen tähti luhistuu mustaksi aukoksi, tai kun kaksi toisiaan kiertävää neutronitähteä törmää toisiinsa muodostaen mustan aukon. Tähden nopea luhistuminen tai neutronitähtien törmäys aiheuttaa äärimmäisen energeettisen räjähdyksen, joka lähettää gammasäteitä kahdessa toisiaan vastakkaisessa hiukkassuihkussa. Gammasädepurkauksen kesto on hyvin lyhyt, vaihdellen muutamista sekunneista minuutteihin, mutta purkauksen energia vastaa Auringon koko elinkaarensa aikana syntyvän säteilyn energian määrää. Hiukkassuihkujen törmätessä tähtienväliseen aineeseen, ne hidastuvat ja säteilevät yhä pidemmillä aallonpituuksilla röntgensäteistä radioaaltoihin asti. Tämä jälkihehku kestää yleensä päiviä, jopa viikkoja gammasädepurkauksen jälkeen. GRB 110328A osoittautui kuitenkin nopeasti aivan erilaiseksi gammasädepurkaukseksi, sillä vielä viikon jälkeen Swift havaitsi kohteesta vuorotelleen kirkastuvaa ja himmenevää säteilyä (kts. kuva alla).

Credit: NASA/Swift/Penn State/J. Kennea

Tähtitieteilijät eivät olleet koskaan havainneet yhtä kirkasta ja pitkään säteilevää kohdetta. Lisähavainnot Hubble -avaruusteleskoopilla ja Chandra -röntgenteleskoopilla osoittivat, että GRB 110328A sijaitsee 3.8 miljardin valovuoden päässä olevan galaksin keskellä. Niinpä on hyvin todennäköistä, että gammasädepurkaus on kytköksissä galaksin keskustassa sijaitsevaan supermassiiviseen mustaan aukkoon. Supermassiiviset mustat aukot ovat miljoonien tai miljardien Auringon massan painoisia mustia aukkoja, joiden ajatellaan sijaitsevan jokaisen massiivisen galaksin (kuten Linnunradan) keskustassa. Tutkijat ajattelevatkin, että kyseinen gammasädepurkaus johtui yhden galaksin tähden ajautumisesta liian lähelle mustaa aukkoa, jolloin supermassiivisen mustan aukon aiheuttamat vuorovesivoimat repivät tähden kappaleiksi (kts. kuva yllä). Irtonainen tähtiaines kerääntyi supermassiivisen mustan aukon ympärille muodostaen ns. kertymäkiekon, josta materia lähellä mustaa aukkoa linkoutuu ulospäin voimakkaan magneettikentän avustuksella mustan aukon navoilta kahdessa toisiaan vastakkain olevissa hiukkassuihkuissa, samaan tapaan kuin varsinaisissa gammasädepurkauksissa. Kertymäkiekossa sijaitseva materia ei kuitenkaan kerralla putoa mustaan aukkoon tai linkoudu hiukkassuihkuihin, vaan se ruokkii mustaa aukkoa ja hiukkassuihkuja pikku hiljaa, aiheuttaen havaitunlaisen pitkäikäisen ja kirkkaudeltaan vaihtelevan purkauksen. GRB 110328A on kuitenkin niin kirkas, että yllä mainittu skenaario pätee ainoastaan mikäli Maa sijaitsee suoraan kohti yhtä hiukkassuihkua, jolloin suhteellisuusteorian mukaan säteily näennäisesti voimistuu. Maa sijaitsee kuitenkin niin kaukana tästä kohteesta, joten hiukkassuihkujen säteily ei aiheuta meille minkäänlaista vaaraa. Päinvastoin meillä on mahdollisuus ihastella yhtä maailmankaikkeuden ihmettä aitiopaikalla.

NASA:n lehdistötiedote

Pioneer-anomalia

Credit: NASA

Käsi pystyyn kuka muistaa vielä Pioneer-anomalian? Kyseessä on yksi viime vuosikymmenen suurimmista ratkaisemattomista kysymyksistä astrofysiikassa. Ongelma on siis seuraavanlainen. Pioneer 10 ja 11 luotaimet laukaistiin 1970-luvun alkupuolella kohti Jupiteria ja Saturnusta. Saavutettuaan kohteensa luotaimet jatkoivat matkaansa pois Aurinkokunnasta, niiden nopeuden kuitenkin hidastuen pikku hiljaa Auringon vetovoiman vaikutuksesta. Mutta tarkat mittaukset osoittivat, että luotaimet hidastuivat enemmän kuin niiden olisi pitänyt, aivan kuin joku näkymätön voima vetäisi niitä kohti Aurinkoa. Vähennettyään Auringon ja planeettojen painovoimakentistä aiheutuvat häiriöt, hidastuvuudeksi jäi vielä jäljelle minimaalinen (8.74±1.33)*10^-10 m/s². Kyseessä on kuitenkin todellinen, mitattava vaikutus, joten kysymys kuuluukin mistä se on peräisin. Tutkijat ajattelivat ensimmäiseksi, että avaruusaluksen lämpösäteily aiheuttaisi ylimääräisen hidastuvuuden, mutta loppujen lopuksi päätyivät selittämään vain 67% hidastuvuudesta. Selittämätön voima räjäytti fysiikan uusien lakien teorioiden pankin ja hidastuvuutta on selitetty mm. Auringon painovoiman olevan voimakkaampi suurilla etäisyyksillä (nk. modifioitu newtonilainen dynamiikka). Nyt tutkijat ovat toistaneet alkuperäisen luotaimen lämpösäteilylaskun. Alkuperäinen tutkimus vain arvioi karkeasti vaikutuksen luotaimen lämpösäteilyn heijastumisesta sen rakenteista, mutta uudessa tutkimuksessa tutkijat mallinsivat tietokoneella, kuinka luotaimen lämpösäteily tarkkaan ottaen heijastuu ja mihin suuntaan se jatkaa matkaansa. Mallinnus perustui 1970-luvulla, eli osuvasti Pioneer-luotaimien aikakautena kehitettyyn tekniikkaan nimeltään Phong-varjostus, jota nykyään käytetään yleisesti renderointiohjelmissa mallintamaan heijastuksia kolmiulotteisista kappaleista. Tutkimuksessa saatiin selville, että lämpösäteily päätarvikesäiliön takaseinästä osuu luotaimen antenniin ja kimpoaa siitä takaisin. Koska antenni osoittaa kohti Maata ja näin ollen myös kohti Aurinkoa, heijastuksien aiheuttama säteily lisää luotaimen hidastuvuutta juuri tarvittavan määrän, jotta anomalia häviää. Näyttäisi vahvasti siltä, että uusia fysiikan lakeja ei tarvittaisikaan tämän ilmiön selittämiseksi.

Tieteellinen artikkeli 

Uusi hiukkanen, uusi voima?

Tieteen eturintamalla signaalin erottaminen kohinasta on erittäin vaikeaa, kuten käy ilmi tästäkin tuloksesta, jonka juuri lopettamaisillaan oleva hiukkaskiihdytin Tevatron on löytänyt. Toisin kuin LHC:ssä, joka törmäyttää vastakkain kahta protonisuihkua, Tevatronissa on protoni ja antiprotonisuihkut. Nyt Tevatronin aineistosta on löytynyt viitteitä täysin uudesta hiukkasesta törmäyksissä, jotka tuottavat W- ja Z-bosoneita, eli heikon vuorovaikutuksen välittäjähiukkasia. WZ-pareja syntyy törmäyksissä satunnaisesti ja ne eivät ole kovinkaan pitkäikäisiä, vaan hajoavat nopeasti stabiileimmiksi hiukkasiksi, jotka selviävät hiukkaskiihdyttimen ilmaisimille asti. Havaitsemalla törmäyksen hajoamistuotteita, pystytään niiden alkuperä jäljittämään. Summaamalla hajoamistuotteiden energiat yhteen saadaan selville, minkä hiukkasen hajoamisesta ne ovat peräisin ja kuinka paljon tuo kyseinen hiukkanen painaa. Valitsemalla havainnot sopivia kriteerejä käyttäen tutkijat pystyivät poimimaan sellaiset reaktiot, joissa W/Z-bosoneita oletettavasti syntyy, laskea niiden energian ja verrata sitä tunnettuun W/Z-bosonin energiaan. Tutkijoiden täytyi ottaa myös huomioon muita prosesseja, joiden hajoamistuotteet näyttävät samanlaisilta, esimerkiksi huippu-kvarkin hajoaminen. Loppujen lopuksi tutkijat päätyivät tähän:

Credit: Fermilab

Vasen kuvaaja näyttää, kuinka havaitut hajoamisreaktiot jakautuvat eri hiukkasille. Väritetyt alueet vastaavat kunkin hajoamistuotteen teoreettisesti laskettua mallia. Kuitenkin näyttäisi siltä, että malli ei aivan sopisi havaintoihin 120-160 GeV/c² (hieman hassu massan yksikkö, mutta käytännöllinen hiukkasten parissa työskenteleville, 1 GeV/c² ≈ 1.78*10^-27 kg) alueella. Tämä ylijäämä erottuu paremmin kun aineistosta vähennetään kaikki muu paitsi W/W- ja W/Z-bosoniparien aiheuttama piikki noin 80 GeV/c² kohdalla, eli juuri siellä missä sen teorian mukaan pitäisikin olla. Samanlainen piikki on kuitenkin havaittavissa 144 GeV/c² ympärillä, missä nykyteorian mukaan ei pitäisi sijaita mitään hiukkasta. Sen ei myöskään pitäisi olla Higgsin hiukkanen, vaan kyseessä olisi täysin tieteelle uusi hiukkanen. Mutta kuinka merkittävä tämä tulos on? Tiukkojen testien jälkeen, tutkijat päätyivät tulokseen, että todennäköisyys havaita mittauskohinasta samanlainen piikki on 0.00076, vastaten 3.2 sigman (keskihajonnan) merkitsevyyttä. Kun signaali ylittää tieteessä kolme sigmaa, tutkijat alkavat innostua asiasta, mutta se ei vielä tarkoita, että kyseessä olisi todellinen signaali. Niinpä lisäaineisto olisi tässäkin tapauksessa paikallaan, jota varmasti saadaan piakkoin LHC:n syövereistä.

Tieteellinen artikkeli

Viikon video

50-vuotta sitten ihmiskunta muuttui avaruusmatkailevaksi sivilisaatioksi.

Advertisements

Trackbacks & Pingbacks

  1. Supermassiiviset mustat aukot: elämä, maailmankaikkeus – ja kaikki « uniVersI/O pingbacked : 5 years, 9 months ago

Kommentit



Vastaa

Täytä tietosi alle tai klikkaa kuvaketta kirjautuaksesi sisään:

WordPress.com-logo

Olet kommentoimassa WordPress.com -tilin nimissä. Log Out / Muuta )

Twitter-kuva

Olet kommentoimassa Twitter -tilin nimissä. Log Out / Muuta )

Facebook-kuva

Olet kommentoimassa Facebook -tilin nimissä. Log Out / Muuta )

Google+ photo

Olet kommentoimassa Google+ -tilin nimissä. Log Out / Muuta )

Muodostetaan yhteyttä palveluun %s

%d bloggers like this: