uniVersI/O


Category Archive

The following is a list of all entries from the Hienot kuvat category.

Tiedekatsaus 1/12

Hyvää uutta vuotta! Viime vuoden loppu puolella tiedeviikko ei pysynyt enää viikkoaikataulussa, joten uuden vuoden kunniaksi tiedeviikko muutetaan tiedekatsaukseksi. Uusi vuosi alkaa tähtitieteen parissa ja ensimmäinen katsaus käsittelee tammikuussa järjestetyn Amerikan tähtitieteellisen seuran talvikokouksen antia. Luvassa on uusia tutkimuksia tämän vuoden varmaksi hittituotteeksi muodostuvista eksoplaneetoista ja pimeästä aineesta gammasäteitä unohtamatta. Ja eikun menoksi…

Pimeän aineen verkko

Credit: Van Waerbeke, Heymans & CFHTLens collaboration
Credit: Van Waerbeke, Heymans & CFHTLens collaboration

Emme voi nähdä sitä, emme voi tuntea sitä, emmekä voi reagoida sen kanssa, mutta pimeä aine on yksi maailmankaikkeutemme peruspilareista. Ensimmäiset vihjeet meille näkymättömän aineen olemassaolosta saatiin 1970-luvulla spiraaligalaksihavainnoista, joiden pyörimisprofiilin selittämiseksi pimeää ainetta ensimmäisenä ehdotettiin. Sittemmin tutkijat ovat osoittaneet, että pimeä aine hallitsee maailmankaikkeuden aineen määrää viisinkertaisella osuudellaan verrattuna näkyvään, atomeista koostuvaan aineeseen. Simulaatiot ovat osoittaneet, että maailmankaikkeus on järjestäytynyt verkkomaiseksi rakenteeksi, jossa pimeän aineen solmukohtiin on kerääntynyt näkyvän aineen keskittymiä, galaksijoukkoja, mutta toistaiseksi tutkijat eivät ole pystyneet osoittamaan tätä havaintojen pohjalta. Nyt kansainvälinen tutkimusryhmä käyttäen Canada-France-Hawaii -teleskooppia on onnistunut havaitsemaan pimeän aineen laajan mittakaavan verkkomaisen rakenteen. Mutta miten se on mahdollista, kun pimeää ainetta on mahdoton nähdä? Ratkaisu on käyttää itse pimeää ainetta havaintovälineenä. Tutkijat selvittivät miten etualalla sijaitsevat galaksijoukot kaareuttavat avaruutta, ja samalla vääristävät joukon takana olevien galaksien valoa, toimien ns. gravitaatiolinssinä. Tutkijat havaitsivat taustalla sijaitsevien galaksien näennäistä kaareutumista ja laskivat kuinka massiivinen etualan galaksijoukon täytyy olla, jotta havaittu kaareutuvuus pystyttiin toistamaan tietokonemallia apuna käyttäen. Näin pystytään arvioimaan galaksijoukon todellinen massa pimeä aine mukaanlukien. Vastaavasti pimeän aineen määrä saadaan vähentämällä kokonaismassasta näkyvän aineen eli tähtien ja galaksien massa, joka taas voidaan arvioida galaksijoukon kirkkauden perusteella. Tulokset pohjautuvat viiden vuoden aikana tehtyihin havaintoihin kymmenestä miljoonasta galaksista, joiden avulla yo. pimeän aineen kartta pystyttiin muodostamaan. Kartta vahvistaa edelleen käsitystä siitä, että maailmankaikkeuden rakenne koostuu tiheistä solmukohdista, massiivisista galaksijoukoista, joita yhdistää ohuet säikeet, jotka ympäröivät tyhjiä alueita.

Lehdistötiedote

Planeetat ovat ennemmin sääntö kuin poikkeus

Credit: ESO/Z. Bardon/ProjectSoft

Gravitaatiolinssien avulla voidaan tutkia myös muutakin kuin pimeää ainetta, nimittäin planeettoja. Samaan tapaan kuin galaksijoukot vääristävät joukon takana olevien galaksien valoa, niin yksittäinen tähti (ja sitä kiertävät planeetat) Linnunradassa voi vääristää sen takana sijaitsevan tähden valoa. Kaksi tähteä täytyy sijaita täsmälleen samassa linjassa Maasta katsottuna, jotta etualan tähden ja planeetan aihettama kirkkauden muutos on havaittavissa. Todennäköisyys sille, että kaksi tähteä sattuu sijaitsemaan näin on siis erittäin pieni. Onneksi Linnunradassa ei ole pulaa tähdistä, joten ratkaisu on havaita hyvin montaa eri tähteä ja toivoa parasta. Niinpä tähtitieteilijät ovat havainneet useampaa miljoonaa tähteä joka yö kuuden vuoden ajan. Kaiken kaikkiaan planeetan aiheuttamia gravitaatiolinssi-ilmiöitä havaittiin kokonaiset kolme kappaletta. Määrä ei ehkä kuulosta paljolta, mutta itseasiassa se on yllättävänkin paljon ottaen huomioon kuinka harvinainen kyseinen ilmiö on. Gravitaatiolinssimenetelmä on kohtuullisen herkkä metodi planeetan massan ja sen kiertoradan määrityksessä. Sitä voidaan käyttää havaitsemaan eksoplaneettoja joiden massa vaihtelee viidestä Maan massasta aina kymmeneen Jupiterin massaan saakka, ja jotka sijaitsevat 0.5-10 AU:n (1 AU = Maan keskimääräinen etäisyys Auringosta) etäisyydellä emotähdestään. Aiempien tutkimusten mukaan eksoplaneettojen massat tähtien ympärillä jakautuvat potenssilain mukaisesti vähentyen mitä raskaammiksi planeetat tulevat. Toisin sanoen keveiden, Maan massaisten, planeettojen määrä galaksissamme on suurempi kuin raskaiden Jupiterin kaltaisten planeettojen. Käyttäen hyväksi tätä tietoa, tutkijat pystyivät arvioimaan eri massaisten planeettojen määrää Linnunradassa pohjautuen uusiin gravitaatiolinssihavaintoihin eksoplaneetoista. Meillä ei tietenkään ole mitään syytä epäillä, että kyseiset havainnot olisivat jotenkin erityislaatuisia, vaan kyseessä on satunnainen otos Linnunradan tähdistä, joten havaintojen pohjalta tehty planeettojen määrän yleistys on sangen pätevä. Mikä tuo tulos sitten tarkkaan ottaen on? Tutkijat arvioivat, että keskimäärin jokaisen tähden ympärillä on 1.6 (+0.72/-0.89) planeettaa. Tämä ei siis merkitse sitä, että jokaisen tähden ympärillä olisi planeetta. Onhan Aurinkokunnassakin jo kahdeksan planeettaa. Mutta alkaa näyttää siltä, että sadan miljardin tähden lisäksi Linnunradasta löytyy myös sata miljardia planeettaa. Täytyy myös muistaa, että havainnot jättävät ulkopuolelle vielä planeetat, jotka ovat kevyempiä kuin viisi Maan massaa (Aurinkokunnassa tämä vastaa 50% planeetoista) ja jotka ovat lähempänä tai kauempana emotähdestä kuin 0.5-10 AU:ta (Aurinkokunnassa tämä koskee Merkuriusta, joka sijaitsee 0.4 AU:n etäisyydellä Auringosta, sekä Uranusta ja Neptunusta, jotka sijaitsevat 19.6 AU:n ja 30 AU:n etäisyydellä Auringosta). Eli mikäli joku toinen sivilisaatio Linnunradassa havaitsisi samalla tavalla Aurinkoa, se toteasi Aurinkoa kiertävän kaksi planeettaa: Jupiterin ja Saturnuksen. Näin ollen tuo 1.6 planeettaa per tähti on todennäköisesti vähemmän kuin todellinen planeettojen määrä Linnunradassa. Tämän tuloksen lisäksi tutkijat arvioivat, että jokaisella tähdellä on 17% todennäköisyys Jupiterin massaiseen planeettaan ja 52% todennäköisyys Neptunuksen massaiseen planeettaan. Olettaen, että planeettojen massan potenssilakijakauma pätee myös viittä Maan massaa kevyempiin planeettoihin, voidaan tuloksesta ekstrapoloida 67% todennäköisyys Maan massaiseen planeettaan kiertämässä kutakin Linnunradan tähteä.

ESO:n lehdistötiedote

Tieteellinen artikkeli

Saturnuksen kaksoisolento?

Credit: Michael Osadciw/University of Rochester

Havaitsemalla eksoplaneetan siluettia sen kulkiessa emotähdensä editse noin 420 valovuoden päässä Maasta tutkijat ovat löytäneet mahdollisesti Saturnuksen kaksoisolennon. Sco-Cen tähden (oikea nimi 1SWASP J140747.93-394542.6 tai ASAS J140748-3945.7) ympäriltä on löydetty eksoplaneetta, jolla todennäköisesti on ympärillään valtava rengasjärjestelmä. Yksi käytetyimmistä tavoista havaita eksoplaneettoja on nk. transit-metodi (kts. kuva alla), jossa eksoplaneetta kulkee emotähtensä editse ja näin ollen himmentää hieman tähden valoa. Pallomainen planeetta himmentää tähden valoa säännöllisesti, mutta Sco-Cen tähden valo havaittiin himmenevän erittäin epäsäännöllisesti. Jos Sco-Cen tähteä kiertävä kappale ei voi olla pallomainen planeetta, niin mikä se sitten on? Kappaleen havaittiin himmentävän maksimissaan jopa 95% tähden valosta, kun normaalisti eksoplaneetan havaitaan himmentävän emotähtensä valoa vain pari prosenttia. Ensiksi tutkijat yrittivät selittää tähden epätavallisen himmenisen johtuvan toisen tähden tai Sco-Cen tähden ympärillä olevan kaasu- ja pölykiekon avulla, mutta tulokset eivät vastanneet havaintoja. Parhaiten tähden himmenemisen selitti malli, jossa eksoplaneetta tai kevyt tähti, jolla on valtava kaasu- ja pölykiekko tai toisin sanoen rengasjärjestelmä, ohitti emotähden. Tässä tapauksessa kaasu- ja pölykiekon läpimitaksi saatiin huikeat 0.2-0.8 AU:ta. Verrattuna Saturnuksen renkaitten läpimittaan tämä kiekko on 200-800 kertaa suurempi. Tutkijat pystyivät myös päättelemään himmenemismallista, että renkaita on kolme kappaletta, joita erottaa samantyyppiset aukot kuin Saturnuksen renkaissa. Saturnuksen aukot ovat syntyneet sen kuiden vetovoiman aiheuttamista ratahäiriöistä, joten mikäli tämä sama efekti toimii Sco-Cen tähden ympärillä kiertävällä eksoplaneetalla, voisi se olla ensimmäinen epäsuora havainto eksokuista! Tähän mennessä tähden himmeneminen on havaittu vain kerran, joten Sco-Cen tähden kumppanin kiertoaikaa emotähden ympäri ei vielä tunneta. Todennäköisin vaihtoehto selittämään outo havainto on kuitenkin kaksoistähtijärjestelmä, jossa kaksi tähteä ovat eri evolutiivisessa vaiheessa. Näistä keveämmällä ja nuoremmalla tähdellä on vielä pöly- ja kaasukiekko ympärillään ja se kiertää vanhempaa tähteä, joka on puhaltanut jo oman kiekkonsa tähtienväliseen avaruuteen. Vastaavanlainen tähtijärjestelmä, jossa toista tähteä kiertää kaasu- ja pölykiekon omaava kappale on esimerkiksi ε Aurigae.

Ylhäällä: transit-metodin havainnekuva. Alhaalla vasemmalla: Sco-Cen:stä havaittu valokäyrä (mustat pisteet) ja siihen sovitettu eksoplaneetta ja rengasjärjestelmämalli (katkoviiva). Alhaalla oikealla: Nk. normaali eksoplaneetan aiheuttama emotähden himmenemisprofiili (Kepler 6b)

Lehdistötiedote

Tieteellinen artikkeli

Kolme vuotta maailmankaikkeutta Fermin silmin

 Jos näkisit näkyvän valon sijaan yli 1 GeV:n (miljardi elektronivolttia, eli noin miljardi kertaa näkyvän valon aallonpituutta pienempää) säteilyä ja katsoisit taivaalle, näkisit kutakuinkin seuraavanlaisen maiseman:

Credit: NASA/DOE/Fermi LAT Collaboration

Yo. kuva näyttää gammasädesatelliitti Fermin havaitsevan koko taivaan kartan. Kirkkaampi väri vastaa kirkkaampia gammasädekohteita. Kuvasta näkyy kuinka diffuusi gammasädehehku täyttää taivaan ja on kaikista kirkkain Linnunradan tasossa (keskellä kuvaa). Tämä hehku syntyy kun kosmiset säteet törmäävät tähtienvälisen aineen kanssa ja kattaa noin 75% Linnunradan gammasäteilystä. Pistemäisistä kohteista (noin 500 kappaletta, kts. kuva alla) noin 10% on Linnunradassa sijaitsevia pulsareita ja supernovajäänteitä, yli puolet on  kaukaisia kvasaareja ja loput ovat toistaiseksi tuntemattomia kohteita.

Maailmankaikkeus tietokoneessa (ja tietokone maailmankaikkeudessa)

Mainokset

Nobel-viikko

Fysiikan Nobel

Credit: NASA/WMAP Science Team

Fysiikan Nobel meni tällä kertaa kolmelle tähtitieteilijälle: Saul Perlmutterille, Adam Riessille ja Brian Schmidtille, jotka supernovahavaintojen pohjalta osoittivat, että maailmankaikkeus laajenee kiihtyvällä nopeudella. Maailmankaikkeuden kiihtyvän laajenemisen havaitseminen tuli tutkijoille täydellisenä yllätyksenä, mutta sitä pohjustamassa ovat monet havainnot, mm. tyypin Ia supernovista (kts. lyhyt johdatus supernoviin), ns. maailmankaikkeuden standardikynttilöistä, joiden järjestelmällisestä havaitsemisesta tuoreet nobelistit pokkasivat palkintonsa. Aiemmin tutkijat ajattelivat, että alun perin Edwin Hubblen havaitsema maailmankaikkeuden laajeneminen ennen pitkää pysähtyy galaksien välisen painovoiman vastustaessa laajenemista ja hiljalleen maaailmankaikkeus alkaisi pienentyä ja luhistua kasaan. Supernovahavainnot kuitenkin selvästi osoittavat, että maailmankaikkeus laajenee kiihtyvällä nopeudella, eli havaitsemme kauempana olevien galaksien etääntyvän meistä nopeammin kuin lähempänä olevat galaksit. Itseasiassa tämä on juuri Perlmutterin, Riessin ja Schmidtin tutkimusryhmien tulos. He havaitsivat eri etäisyyksillä sijaitsevissa galakseissa räjähtäviä tyypin Ia supernovia, joiden kirkkaus on standardisoitavissa, ja näin ollen niiden avulla pystytään määrittämään galaksien etäisyys. Havaintojen mukaan tyypin Ia supernovien kirkkaus vaihtelee hieman supernovasta toiseen, mutta räjähdyksien keston ja kirkkauden välillä havaittiin yhteys vuonna 1990, jonka avulla eri etäisyyksillä tapahtuvien supernovien kirkkaudet pystyttiin standardisoimaan. Supernovat ovat erittäin harvinaisia, keskimäärin niitä tapahtuu kerran sadassa vuodessa per galaksi. Onneksi maailmankaikkeudessa on kuitenkin runsaasti galakseja tarjolla ja näin ollen supernovia pystytään havaitsemaan hieman inhimillisemmällä aikataululla. Perlmutter, Riess ja Schmidt havaitsivat mahdollisimman suurta osaa taivaasta kolmen viikon välein, ja vertasivat havaintoja aikaisempiin saadakseen selville mikäli uusia supernovia oli ilmestynyt taivaalle. Jos supernovakandidaatteja löytyi, niitä havaittiin tehokkaammilla teleskoopeilla, jotta niiden supernovatyyppi saatiin määritettyä. Mikäli supernova havaittiin tyypin Ia supernovaksi, sitä havaittiin aina siihen asti kunnes räjähdys oli himmentynyt olemattomiin, josta purkauksen kesto ja näin ollen sen absoluuttinen kirkkaus pystyttiin laskemaan. Kaiken kaikkiaan Perlmutter, Riess ja Schmidt havaitsivat 52 supernovan kirkkauden ja huomasivat kauempana olevien supernovien olevan himmeämpiä kuin odotettiin, eli toisin sanoen sijaitsevan kauempana kuin odottettiin. Näytti myös siltä, että himmeneminen ei johtunut galaksin tai galaksienvälisen avaruuden välisestä kaasusta ja pölystä, koska supernovista ei havaittu merkittävää ”punastumista”. Kaasu ja pölypilvet sirottavat enemmän sinistä kuin punaista valoa tehden kohteista, joiden valo kulkee pilvien läpi punaisempia.

Kosmologeilla ei kestänyt kauan kaivaa pöytälaatikoistaan vastaus maailmankaikkeuden kiihtyvälle laajenemiselle, ja suhteellisen pian nk. pimeä energia nostettiin vastuuseen kiihtyvästä laajenemisesta. Itseasiassa Einsteinin kehittämä ja hylkäämä kosmologinen vakio, Λ, yleisessä suhteellisuusteoriassa pystyi selittämään pimeän energian ja maailmankaikkeuden kiihtyvän laajenemisen. Tämän lisäksi pimeä energia ratkaisi kertaheitolla myös muita siihen aikaan kosmologien pähkäilemiä ongelmia, kuten miksi maailmankaikkeus vaikutti nuoremmalta kuin sen vanhimmat tähdet, miksi maailmankaikkeudessa ei näyttänyt olevan tarpeeksi ainetta, ja miksi suuren mittakaavan rakenteet olivat tasaisia. Sittemmin pimeän energian olemassaololle on tullut vahvistuksia muista havainnoista, kuten mikroaaltotaustasäteilyn, joka mittaa maailmankaikkeuden sisältämää energiaa (sisältäen myös aineen), ja galaksien sekä galaksijoukkojen sisältämän aineen välisestä erosta. Laskettaessa yhteen aineen määrä maailmankaikkeudessa (mukaan lukien pimeä aine) saadaan vain 27% kaikesta energiasta, joka on mitattu mikroaaltotaustasäteilystä. Näin ollen 73% energiasta jää käyttämättä johonkin näkymättömään asiaan, joka ei ole ainetta: eli pimeään energiaan. Tämä pimeän energian määrä on myös juuri oikea selittämään havaittu maailmankaikkeuden laajeneminen. Pimeää energiaa tukevat myös havainnot nk. baryonisista akustisista oskillaatioista ja maailmankaikkeuden suuren mittakaavan rakenteen evoluutiosta. Koska pimeän aineen osuus maailmankaikkeudessa on 23%, niin kertaheitolla kaikki materia, josta ajattelimme maailmankaikkeuden koostuvan – galaksit, tähdet, kaasu, pöly, planeetat ja planeettojen asukkaat – kattavatkin vain 4% koko maailmankaikkeuden energiasta. Toisin sanoen meillä ei ole tarkkaa käsitystä siitä mitä 96% meidän maailmankaikkeudesta on.

No mitä ajattelemme pimeän energian sitten olevan? Pimeällä energialla on kolme tärkeää ominaisuutta. Ensiksi, se on pimeää: emme voi nähdä sitä, ja havaintojen (sillä tarkkuudella kuin se on teknisesti mahdollista) perusteella se ei reagoi aineen kanssa ollenkaan. Toiseksi, se on tasaisesti jakautunutta kaikkialle avaruuteen: se ei putoa galakseihin tai galaksijoukkoihin tai muuten se olisi jo huomattu tutkittaessa näiden kohteiden dynamiikkaa. Kolmanneksi, siitä ei pääse eroon millään: pimeän energian tiheys pysyy vakiona vaikka maailmankaikkeus laajeneekin. Tällä hetkellä suosituin kandidaatti pimeälle energialle on yllä mainittu kosmologinen vakio, joka vastaa käytännössä tyhjiön energiaa. Mikäli avaruuden jokaisessa kohdassa on energiaa 10-9 Joulea/m³, riittää se kattamaan pimeän energian osuuden maailmankaikkeudessa. Määrä kuulostaa pieneltä, ja sitä se onkin, mutta yhteenlaskettuna pimeä energia kattaa juuri 73% maailmankaikkeuden energiasta ottaen huomioon maailmankaikkeuden valtavan koon.

Mistä tyhjiöön sitten tulee energiaa? Klassisen mekaniikan mukaan tyhjiö on totaalisen tyhjä, mutta kvanttimekaniikka on muuttanut tutkijoiden käsitystä tyhjiön tyhjyydestä. Kvanttitasolla tyhjiökään ei ole tyhjä vaan kuhisee virtuaalisia hiukkasia, jotka pulpahtavan esiin hetkiseksi vain tuhoutuakseen pian uudelleen. Mikäli tyhjiön energia on peräisin näistä kvanttitason heilahteluista, voidaan niiden energia laskea yhteen ja verrata pimeän energian arvoon. Valitettavasti tyhjiön energia tässä tapauksessa on 10¹²º kertaa suurempi kuin pimeän energian havaittu määrä, joten selvästikin jotain on pielessä. Mutta asiat ovat vieläkin huonommin. Meillä ei ole minkäänlaista käsitystä siitä, miksi kosmologinen vakio on niin pieni kuin se on. Selittääkseen kosmologisen vakion arvon teoreetikot ovat keksineet toinen toistaan nerokkaampia ja ”hullumpia” teorioita. Esimerkiksi yksi mahdollinen teoria, joka selittää kosmologisen vakion arvon on multiversumi, jonka mukaan maailmankaikkeus on vain yksi monista maailmankaikkeuksista, joissa kaikissa on eri kosmologisen vakion arvo, mutta juuri meidän maailmankaikkeudessa se on sellainen, joka mahdollistaa elämän synnyn. Itse asiassa voidaan laskea minkä suuruinen kosmologinen vakio täytyisi olla, jotta maailmankaikkeus ei laajenisi liian nopeasti, jolloin tähdet, galaksit ja elämä ehtivät muodostua, mutta ei myöskään liian hitaasti, jolloin maailmankaikkeus tähtineen ja galakseineen luhistuisi heti kasaan. Yllätys, yllätys, näin laskettu arvo vastaa täsmälleen havaittua kosmologisen vakion arvoa. Vaihtoehtoiset teoriat, jotka pyrkivät selittämään kosmologisen vakion arvoa käyttävät hyväkseen teorioita mm. kvanttigravitaatiosta, ylimääräisistä ulottuvuuksista, madonrei’istä ja supersymmetriasta.

Onko sitten mahdollista, että pimeä energia on jotain muuta kuin tyhjiön energiaa? Toki – ainoat kriteerit pimeälle energialle mainittiin yllä, mutta on hyvin hankalaa keksiä jotain, joka on hyvin tasaisesti levittäytynyt avaruuteen ja joka ei avaruuden laajenemisesta huolimatta harvene ollenkaan. Yksi vaihtoehto kosmologiselle vakiolle on nk. kvintessenssi, joka on avaruuden täyttävä skalaarikenttä, joka muuttuu hyvin hitaasti ajan kuluessa. Toinen mahdollisuus on, että kosmologista vakiota ei ole olemassakaan, vaan sen korvaa jollain lailla mukautettu suhteellisuusteoria (esim f(R) painovoima tai DGP-painovoima). Mikään näistä teorioista ei kuitenkaan ole ongelmaton, ja kaiken kaikkiaan pimeä energia on suurimmilta osin vielä täysi mysteeri. Todennäköisesti tarvitsemme paljon lisää Nobelin arvoisia havaintoja maailmankaikkeudesta, jotta pääsemme perille pimeän energian luonteesta, maailmankaikkeuden synnystä ja todennäköisesti myös siitä miten suhteellisuusteoria ja kvanttimekaniikka saadaan sulautettua yhden teorian alle. Ja tämä sisältääkin tieteen tekemisen mielenkiintoisimman puolen: vastaukset eivät löydy kirjan viimeiseltä sivulta, vaan meidän on selvitettävä ne itse.

Ig Nobelit

Tuttuun tapaan myös vuoden 2011 Ig® Nobelit on jaettu ja palkinnot menivät seuraavasti:

  • Fysiologian Ig Nobel meni kansainväliselle tutkimusryhmälle, joka ei löytänyt näyttöä siitä, että haukotus tarttuisi punajalkakilpikonnilla (Geochelone carbonari). Tulos: todennäköisesti haukotuksen tarttuvuus liittyy lajien kykyyn tuntea empatiaa. 

Tieteellinen artikkeli

  • Biologian Ig Nobel meni australialaiselle tutkimusryhmälle, joka havaitsi, että tietyn tyyppinen kovakuoriaiskoiras (Julodimorpha bakervelli) parittelee tietyn tyyppisen olutpullon kanssa. Tulos: kovakuoriaskoiras luulee otetta parantavia kohoumia pullon alaosassa naaraaksi.

Tieteellinen artikkeli

  • Psykologian Ig Nobel meni Karl Halvor Teigenille tutkimuksesta miksi ihmiset huokailevat. Tulos: ihmiset ajattelevat huokailevan ihmisen olevan surullinen, kun itseasiassa hän on omasta mielestään vain luovuttanut jonkin asian tekemisen/ajattelemisen.
  • Lääketieteen Ig Nobel meni kahdelle tutkimusryhmälle, jotka selvittivät, että ihmiset tekevät toisaalta parempia päätöksiä ja toisaalta huonompia päätöksiä kun heillä on vahva virtsaamisen tunne. Tulos: On parempi siis totella kun luonto kutsuu.
  • Kemian Ig Nobel meni japanilaiselle tutkimusryhmälle, joka kehitti wasabi-palohälyttimen. Tulos: kun palohälytin laukeaa, se ruiskuttaa ympäristöön kaasumaista wasabia, joka varmasti herättää kaikki huoneessa sikeääkin unta nukkuvat asukkaat ilman, että heidän toimintakykynsä lamautuu.
  • Fysiikan Ig Nobel meni hollantilainen tutkimusryhmälle, joka selvitti miksi kiekonheittäjät kärsivät pään huimaamisesta, mutta moukarinheittäjät eivät. Tulos: se on monimutkaista, sisältäen mm. Coriolis-kiihtyvyyden aiheuttaman vaikutuksen.
  • Kirjallisuuden Ig Nobel meni John Perrylle rakenteellisen viivyttelyn teoriasta. Tulos: ollakseen tehokas täytyy tehdä jotain tärkeää, välttääkseen tekemästä jotain vielä tärkeämpää.

Essee

  • Matematiikan Ig Nobel jaettiin kuuden henkilön kesken. Palkinnon sai Dorothy Martin (joka ennusti maailmanlopun koittavan 1954), Pat Robertson (joka ennusti maailmanlopun koittavan 1982), Elisabeth Clare Prophet (joka ennusti maailmanlopun koittavan 1990), Lee Jang Rim (joka ennusti maailmanlopun koittavan 1992), Credonia Mwerinde (joka ennusti maailmanlopun koittavan 1999) ja Harold Camping (joka ennusti maailmanlopun koittavan 6.9.1994, ja myöhemmin 21.10.2011). Tulos: on syytä olla huolellinen tehdessään matemaattisia oletuksia ja laskelmia.
  • Rauhan Ig-Nobel meni Vilnan kaupunginjohtajalle luksusautojen parkkeeraamisen estämisestä luvattomille paikoille. Tulos: tehokkain tapa estää luvaton parkkeeraaminen tulevaisuudessa on murskata autot ajamalla niiden päältä tankilla.

  • Turvallisuus: John Senders tutki uraauurtavasti jo 1960-luvulla paljon ennen kännyköitä, kuinka häiriötekijät ajaessa vaikuttavat ajamiseen. Tulos: häiriötekijät vaikeuttavat oman auton ja toisten autojen sijainnin määrittämistä.

Viikon kuva (”I come in peace”):

Jälleen kerran myös Nikon Small World -valokuvakilpailu on pidetty ja henkilökohtainen suosikkini on tässä:

Credit: Nikon Small World Competition


Poimintoja, osa I

Suomen kesä on lyhyt ja ytimekäs, mutta paljon mielenkiintoista ehti kuitenkin tapahtua tieteen saralla. Tässä muutamia poimintoja mielenkiintoisimmista tiedeuutisista. Jatkoa seuraa…

Antimateriavyöhyke Maan ympärillä

Credit: NASA

Antimateriaa on erittäin hankalaa valmistaa laboratoriossa, sillä päästessään kosketuksiin materian kanssa se tuhoutuu ja muuttuu välittömästi säteilyksi. Ainoa keino sen säilytykseen on pitää antimateriaa kasassa magneettikentän avulla irti sen säilytysastian seinistä. Maailmanennätys antimaterian, tarkemmin antivedyn, säilömisessä onkin vain 15 minuuttia. Tämän lisäksi antimateriaa täytyy synnyttää törmäyttämällä lähes valonnopeudella kulkevia protoneja kohtioon, jolloin törmäystuotteeksi syntyy fantastinen määrä eri hiukkasia, muunmuassa antiprotoneja. Antimateriatutkijan elämä ei siis ole helppoa, koska elämme keskellä erittäin materiapainotteista maailmaa. Maan pinnalta poistuessa materiatiheys putoaa kuitenkin huomattavasti, minkä lisäksi antimateriaa eristäviä magneettikenttiä risteilee avaruudessa siellä sun täällä. Käyttäen PAMELA -instrumenttia tutkijat ovat löytäneet antiprotoneita avaruudesta, joita Maan magneettikenttä pitää otteessaan. Antiprotonit löytyivät tarkemmin ottaen Van Allenin säteilyvyöhykkeen alueesta nimeltä Etelä-Atlantin anomalia, jossa säteilyvyöhyke tulee lähimmäksi Maan pintaa (noin 350-600 kilometriä Maan pinnan yläpuolella). Antiprotonit muodostuvat Maan ympärille osittain samaan tapaan kuin Maan pinnalla laboratoriossakin, kun kosmiset säteet, jotka ovat lähes valonnopeudella kulkevia hiukkasia (mm. alfaytimiä ja protoneita), törmäävät Maan ilmakehän ulko-osiin synnyttäen protoneita ja antiprotoneita. Antiprotonit jäävät kiertämään Maata vangittuina Maan magneettikenttään, kunnes ne tuhoutuvat törmätessään tavalliseen aineeseen, tyypillisesti kuljettuaan keskimäärin kymmenisen tuhatta kilometriä säteilyvyöhykkeessä. Havaittuaan 850 päivää säteilyvyöhykettä, PAMELA rekisteröi kaiken kaikkiaan 28 antiprotonia. Havaittujen antiprotonien määrä ei ehkä kuulosta kovin suurelta, mutta ottaen huomioon, että PAMELA havaitsi luotettavasti vain muutaman antiprotonin, havainnot voidaan ekstrapoloida kattamaan koko havaintoaikana säteilyvyöhykkeessä olevien antiprotonien määrä, joka on kolme kertaluokkaa suurempi kuin tähtienvälisessä avaruudessa. Näin ollen Etelä-Atlannin anomalia on rikkain antiprotonien lähde lähiavaruudessa. Vielä on epäselvää voitaisiinko antiprotoneita käyttää jotenkin hyödyksi, mutta ehkäpä tulevaisuudessa antiainetta voitaisiin kerätä luotaimien polttoaineeksi. Esimerkiksi sadan tonnin hyötykuorman lähettäminen vuoden mittaiselle matkalle Jupiteriin ja takaisin vaatisi ainoastaan alle 10 mikrogrammaa antiainetta.

Tieteellinen artikkeli

Raportti antiaineen keräämisestä ja käytöstä 

Oliko Maalla joskus kaksi kuuta?

Credit: Jutzi & Asphaug

Vaikka Kuu onkin avaruuden kappaleista meille lähin ja tutuin, sekä ainoa johon ihminen on jalallaan astunut, tutkijat ovat kiistelleet sen syntyperästä yli sata vuotta. Pikkuhiljaa vallalle on asettunut teoria, jonka mukaan Kuu syntyi, kun hypoteettinen protoplaneetta Theia törmäsi Maahan noin 50 miljoonaa vuotta Aurinkokunnan muodostumisen jälkeen. Theian törmäyksen nostattama Maa-aines kasautui vähitellen suuremmiksi kappaleiksi Maan ympärille, jotka loppujen lopuksi muodostivat Kuun. Viitteitä teorian paikkansapitävyydelle on saatu Kuusta tuoduilla näytteillä, joista mitattu hapen isotooppisuhde on lähes identtinen Maasta otettujen näytteiden kanssa. Mutta Kuulla riittää vielä mysteereitä selvitettäviksi. Esimerkiksi Kuun kääntöpuoli, joka osoittaa aina Maasta poispäin on täysin eri näköinen kuin Maahan näkyvä puoli. Meille tutumpi puolisko on tasainen, matala ja merien peitossa, kun taas Kuun kääntöpuoli on vuoristoinen ja täynnä kraatereita. Aikaisemmin tutkijat ovat selittäneet rakenteellisen eron Kuun eri puolien välillä vuorovesivoimilla. Koska Kuu on vuorovesilukkiutunut Maan kanssa, se on voinut aiheuttaa epäsymmetristä vuorovesikuumentumista, konvektiivisiä prosesseja ja merien kristalloitumista kun Kuu oli mahdollisesti vielä sulaa kiveä. Nyt tutkijat ovat kuitenkin ehdottaneet vaihtoehtoista tapaa Kuun puoliskojen erilaisuudelle. Selittääkseen rakenteellisen eron Kuun eri puolien välillä tutkijat simuloivat tilanteen, jossa Theian törmäyksen jälkeen Maan ympärille muodostui hetkellisesti kaksi kuuta. Useamman kuun pitäminen Maata kiertävillä radoilla on kuitenkin hyvin epästabiili järjestelmä, ja ennen pitkää (noin kymmenen tuhannen vuoden aikaskaalalla) se hajoaa. Mikäli toinen kuu, joka simulaation mukaan olisi halkaisijaltaan noin kolmasosa Kuusta, törmäsi hitaasti Kuuhun (eli pikemmin tarttuisi kiinni Kuuhun, kuin mäjäyttäisi sitä tuhannen päreiksi, kts. kuva yllä), se olisi voinut muodostaa samanlaiset erot Kuun pinnanmuodoissa mitä tänä päivänä havaitsemme. Koska pienemmän kuun pinta olisi vanhempaa sen jähmettyessä nopeammin kuiden muodostumisen jälkeen, kyseinen malli ennustaa, että Kuusta pitäisi löytyä eri ikäisiä kivilajeja, joten tätä teoriaa voidaan tulevaisuudessa testata. Kuun syntyperään on odotettavissa lähiaikoina lisää tietoa, kun juuri laukaistu Kuun painovoimakenttää erittäin tarkasti mittaava GRAIL -luotain pääsee perille uudenvuoden aattona.

Tieteellinen artikkeli

Kylmin tähti

Credit: NASA/JPL-Caltech/UCLA

Tavallisesti ajattelemme tähtien olevan valtavan kuumia energiapalloja, jotka fuusioimalla atomeja niiden ytimien miljoonien asteiden lämpötiloissa säteilevät energiaa ympäröivään avaruuteen. Mutta avaruus on myös täynnä tähtiä, jotka ovat ovat kylmempiä kuin keskiverto pitsauuni. Nämä nk. ruskeat kääpiöt ovat tähtiä, jotka ovat massiivisempia kuin suurimmat kaasuplaneetat, mutta eivät tarpeeksi massiivisia ollakseen täysivertoisia tähtiä. Jotta tähti pystyy fuusioimaan vetyä heliumiksi sen täytyy painaa vähintään noin 75 Jupiterin massan verran. Mikäli tähti painaa vähemmän, sen painovoima ei riitä luomaan tarpeeksi hikisiä olosuhteita tähden keskustaan, jotta vety-ytimien välinen vahva voima ylittyisi ja vedyn fuusioituminen heliumiksi pääsisi käyntiin. Fuusion sijasta tähden keskustaan syntyy painovoimaa vastustava kvanttimekaaninen paine elektronien välille. Tämä tasapainotila säilyy koko tähden loppu elämän, joten tähti hiljalleen himmenee ja jäähtyy kohti tausta-avaruuden lämpötilaa. Massiivisimmat ruskeat kääpiöt voivat syntyessään fuusioida deuteriumia ja litiumia ytimissään, mutta ne jäähtyvät suhteellisen nopeasti ja fuusio loppuu viimeistään miljardin vuoden kuluttua tähden syntymästä. Alle 13 Jupiterin massan ruskeat kääpiöt eivät ole tarpeeksi massiivisia edes fuusioimaan deuteriumia tai litiumia, ja yleisesti ottaen tätä rajaa pidetäänkin erottamaan ruskeat kääpiöt kaasuplaneetoista. Nyt tähtitieteilijät ovat löytäneet kylmimmän ruskean kääpiön (WISE 1541-2250), jonka pintalämpötila on vaivaiset 25 astetta. Tähti sijaitsee noin yhdeksän valovuoden päässä Maasta tehden siitä tähän mennessä seitsemänneksi lähimmän tähden. WISE 1541-2250 havaittiin nimensä mukaan NASA:n WISE -infrapunasatelliitilla, jonka herkät instrumentit pystyivät havaitsemaan tähdestä tulevan heikon infrapunasäteilyn (300 Kelvinin mustan kappaleen säteilyn maksimi osuu juuri infrapuna-alueelle). Varmistaakseen uuden löytönsä olevan ruskea kääpiö, tutkijat havaitsivat tähden spektriä Magellan -teleskoopilla, josta he löysivät veden ja metaanin absorptioviivoja — merkkejä ruskean kääpiön kaasukehästä. Uusi löytö osoittaa, että lähiavaruudessa voi majailla täysin uusi tähtipopulaatio, jota emme ole aikaisemmin vain huomanneet johtuen niiden kylmästä ja heikosta säteilystä. On hyvin mahdollista, että joku päivä havaitsemme tähden joka osoittautuu sijaitsevan lähempänä meitä kuin lähin tähti Proxima Centauri.

Kuvapoiminta I:

HiRISE -kameran ottama kuva maanalaisesta luolasta Marsin pinnalla. Luola on todennäköisesti laavatunneli − jäänne Marsin tuliperäisestä menneisyydestä. Jostain tuntemattomasta syystä Marsin pinta on romahtanut laavatunnelin päältä muodostaen noin 35 metriä leveän ja 20 metriä syvän aukon luolaan ja sen ympärille pienehkön kraaterin luoden vastustamattoman mysteerisen vaikutelman.

Credit: NASA/JPL/University of Arizona

Videopoiminta I:

Kiehtovaa magneettisen nesteen liikehdintää saippuakylvyssä.


Tiedeviikko 12+13/11

Kuten olette varmaan huomanneet, blogia on viime aikoina päivitetty harvakseltaan. Tämä johtuu siitä, että minulla on tällä hetkellä kädet täynnä töitä väitöskirjan parissa, ja todennäköisesti tämä trendi jatkuu vielä tulevaisuudessakin. Toivon mukaan tiedeuutiset maistuvat vielä, vaikka niitä tuleekin tänne hieman hitaammalla tahdilla.

Asteroidien louhinta ja Maan ulkopuolinen älyllinen elämä

Maan ulkopuolisen älyllisen elämän etsiminen on yksi tieteen mielenkiintoisimmista kysymyksistä, mutta menetelmät sen toteuttamiseen ovat toistaiseksi lähes olemattomat. Tähän mennessä ainoa keino on ollut etsiä keinotekoisia radiosignaaleja lähimmistä tähtijärjestelmistä, mutta 50 vuoden ahkeran havaitsemisen jälkeen olemme vieläkin tyhjin käsin. Uusien eksoplaneettahavaintojen myötä Maan ulkopuolisen elämän etsiminen on kuitenkin saanut lisää potkua, erityisesti eksoplaneettojen kaasukehien havaitsemisen ansiosta. Mikäli havaitsemme planeetan kaasukehän koostumuksen olevan erilainen kuin pelkkä planetaarinen kemia antaisi olettaa, sisältäen etenkin runsaasti jotain biogeenistä kaasua, esim. happea, elämän esiintyminen planeetan pinnalla on tällöin todennäköistä (kts. lisää täältä). Tutkijat ovat ehdottaneet myös muita tapoja, joilla vieraan sivilisaation olemassaolo saataisiin selville, esimerkiksi hieman villimpi idea on havaita teknologisesti meitä kehittyneempien sivilisaatioiden tähtien kutittamista. Nyt tutkijat ovat ehdottaneet, että älykkään sivilisaation laajamittainen asteroidien louhinta olisi havaittavissa sivilisaation asuttaman tähtijärjestelmän pölykiekossa. Tähtien ympärillä olevat pölykiekot koostuvat nimensä mukaisesti pölystä sekä suuremmista kappaleista läpimitaltaan aina satoihin kilometreihin saakka. Pölykiekkoa hallitsee tähden painovoiman ja säteilypaineen välinen tasapaino. Siinä missä säteilypaine puhaltaa pienimmät hiukkaset pois tähtijärjestelmästä, suurempien kappaleiden törmäykset synnyttävät niitä lisää. Tasapainotilassa hiukkasten kokojakauma pölykiekossa seuraa potenssilakia. Miksi asteroidien louhinta sitten kiinnostaisi avaruusmatkailevaa sivilisaatiota? Jos kyseessä on teknologisesti meitä edellä oleva sivilisaatio, on todennäköistä, että se on elänyt meitä pidempään kotiplaneetallaan ja käyttänyt loppuun planeetan saatavilla olevat mineraalit. Tutkijat arvelevat myös ihmiskunnan siirtyvän ennen pitkää asteroidien louhintaan mineraalien huvetessa olemattomiin Maassa, kunhan se on ensin ekonomisesti järkevää. Laajamittainen asteroidien louhinta vaikuttaisi pölykiekkoon kolmella eri tavalla. Ensimmäiseksi pölykiekon kemiallinen koostumus muuttuisi, koska louhinta poistaisi suuria määriä louhittavia aineita pölykiekosta. Verrattaessa pölykiekon kemiallista koostumusta tähden kemialliseen koostumukseen (joiden pitäisi olla suurin piirtein samat, koska tähti sekä sitä ympäröivä pölykiekko ovat muodostuneet samasta kaasu- ja pölypilvestä) voidaan havaita mahdollisesta louhinnasta aiheutuvat erot näiden välillä. Toiseksi pölykiekon kappaleiden kokojakauma ei noudattaisi enää tähden painovoiman ja säteilypaineen tasapainon aiheuttamaa potenssilakia louhinnan vähentäessä suurten kappaleiden ja lisätessä pienten kappaleiden määrää pölykiekossa. Kolmanneksi louhinta muuttaisi pölykiekon lämpöjakaumaa, koska asteroidien poraaminen ja kaivaminen synnyttäisi kuumaa pölyä, joka kuitenkin nopeasti jäähtyisi avaruudessa minuuttien aikaskaalassa. Niinpä tietyllä aallonpituudella voisi havaita säteilyvaihteluita, jotka olisivat verrattavissa kuuman porauspölyn jäähtymisen aikaskaalaan. Olisiko asteroidien louhimista siis mahdollista havaita nykyteknologialla? Tutkijat päätyvät artikkelissaan tulokseen, että ainoastaan jos louhinta on mittakaavaltaan teollisuusluokkaa, se voisi aiheuttaa havaittavia muutoksia tähden pölykiekkoon. Mikäli epäilyttävän näköisiä pölykiekkoja havaittaisiin, yllämainitut kohdat eivät vielä kuitenkaan yksin riittäisi vieraan sivilisaation olemassaolon todistamiseen, mutta ne antaisivat astrobiologeille mahdollisia tähtijärjestelmäkandidaatteja lisätutkimuksia varten.

Tieteellinen artikkeli

Universumin pimeä virtaus

Credit: universe-review.ca

Universumin pimeä virtaus on teoria, jonka mukaan näkyvään maailmankaikkeuteemme vaikuttaa jokin voima sen ulkopuolelta, jota emme voi itse suoraan havaita, mutta jonka toissijaisia vaikutuksia näemme galaksijoukkojen poikkeavana liikkeenä. Yleensä ottaen galaksit loittonevat toisistaan maailmankaikkeuden laajetessa, mutta galakseilla on myös nk. ominaisliike, joka syntyy niiden painovoiman vuorovaikutuksesta lähiympäristön galaksien kanssa. Esimerkiksi Linnunrata ja Andromeda ovat törmäyskurssilla toistensa kanssa, vaikka maailmankaikkeus niiden välissä kokoajan laajeneekin. Niinpä mikäli haluat tutkia maailmankaikkeuden liikettä suuressa mittakaavassa, on parempi keskittyä havaitsemaan suuria määriä kohteita kerralla, joilloin galaksien ominaisliikkeet keskiarvoistuvat pois jättäen jäljelle kaikkien galaksien ja galaksijoukkojen yhtenäisen liikkeen johonkin suuntaan. Mikäli maailmankaikkeuden laajeneminen galaksien ominaisliikkeen lisäksi on ainut galakseihin vaikuttava voima, pitäisi niiden liikkua silloin yhtäläisesti joka suuntaan. Vuonna 2008 tutkijat kuitenkin havaitsivat galaksijoukkojen liikkuvan tiettyyn suuntaan kohti 20 asteen laajuista taustataivaan aluetta Kentaurin ja Purjeen tähdistössä, mikä ei ole selitettävissä pelkästään galaksijoukkojen ominaisliikkeellä. Samaan tapaan kuin pimeän aineen ja pimeän energian nimeämisessä, tuntemattomista tekijöistä johtuva galaksijoukkojen liike sai nimekseen pimeä virtaus. Tutkijat arvelivat, että pimeä virtaus saattaa johtua valtavasta massakeskittymästä näkyvän maailmankaikkeuden ulkopuolella, joka vetäisi galaksijoukkoja puoleensa. Tämä voisi olla mahdollista, jos maailmankaikkeus sisälsi massakeskittymiä jo ennen inflaatiota. Tämä teoria kuitenkin sotii nykyistä maailmankaikkeuden evoluutioteoriaa (nimeltään ΛCDM) vastaan. Vuoden 2008 tutkimuksessa käytettiin hyväksi Sunyaevin-Zel’dovitchin vaikutusta, jossa galaksijoukkojen kuumat elektronit sirottavat mikroaaltotaustasäteilyn fotoneja luoden havaittuun taustasäteilykarttaan epätasaisuuksia. Havaitsemalla näitä epätasaisuuksia voidaan galaksijoukkojen liike määrittää. Nyt uusi tutkimus haastaa nämä havainnot tutkimalla suuria määriä yksittäisiä kohteita, tyypin 1a supernovia, ja kuinka niiden ominaisliike sopisi maailmankaikkeuteen, joka sisältää pimeän virtauksen. Tutkimuksen mukaan vuoden 2008 tulos pystyttiin toistamaan, mutta ainoastaan pienillä punasiirtymän arvoilla. Tämän lisäksi vuoden 2008 tutkimuksen mukaan pimeän virtauksen nopeus olisi 600 km/s, kun taas uuden tutkimuksen mukaan supernovista saadut havainnot sopivat malliin, jossa pimeän virtauksen nopeus olisi 180 km/s, mikä taas on lähellä maailmankaikkeuden laajenemisesta saatua nopeutta 170 km/s. Niin tai näin, on aina hyvä muistaa tieteen nyrkkisääntö numero yksi: extraordinary claims require extraordinary evidence. Tässäkin tapauksessa lisäaineisto olisi paikallaan.

Tieteellinen artikkeli

Tähti teekupissa

Tähtitieteilijät ovat löytäneet kylmimmän koskaan havaitun tähden, jonka lämpötila on noin sata astetta (370 Kelviniä), vastaten kiehuvan veden lämpötilaa. Löytö hämärtää rajan kylmien ja pienten tähtien sekä kuumien ja suurten planeettojen välillä. Kyseinen tähti, CFBDSIR 1458+10B, sijaitsee kaksoistähtijärjestelmässä noin 75 valovuoden päässä Maasta. Kaksoistähden molemmat komponentit ovat ruskeita kääpiöitä, jotka ovat ns. epäonnistuneita tähtiä, joilla ei ole tarpeeksi massaa, jotta ydinreaktiot tähden keskustassa käynnistyisivät. Vaikka ruskeiden kääpiöiden olemassaolo ennustettiin jo monta vuosikymmentä sitten, ensimmäinen ruskea kääpiö havaittiin vasta vuonna 1995. Samana vuonna havaittiin myös ensimmäinen eksoplaneetta, joka oli kaasujättiläinen tai ns. kuuma jupiter kiertämässä emotähteään. Himmeimmät ruskeat kääpiöt, nimeltään T-kääpiöt, joiden lämpötila keikkuu 600-1400 Kelvinin välillä, toimivat laboratoriona myös massiivisten eksoplaneettojen tutkimiselle. Toisin kuin eksoplaneetatoilla, ruskeiden kääpiöiden lähistöllä ei usein sijaitse kirkasta tähteä, joka lähes tukahduttaa himmeämmästä kohteesta tulevan säteilyn omalla kirkkaalla säteilyllään. Vaikka ruskeilla kääpiöillä hädin tuskin lämmittäisi pitsan, tutkijat ovat ennustaneet niiden kaasukehissä tapahtuvan mielenkiintoisia sääilmiöitä (tai mielenkiintoisia ainakin tähdistä puhuttaessa), nimittäin vedestä koostuvia pilviä; niitä samoja haituvia, joita tämänkin planeetan ilmakehässä leijailee.

Tieteellinen artikkeli

Viikon kuva (1): Avaruusameeba vai Tycho supernovajäänne?

Chandra röntgenteleskoopin ottama kuva Tycho supernovajäänteestä (punainen väri vastaa matalaenergisempiä röntgenfotoneita kuin sininen väri). Supernovajäänteen oikealla alareunassa on näkyvillä sinisiä, eli hyvin korkeaenergisiä röntgenfotoneja säteileviä raitoja, joita ei olla tähän mennessä koskaan vielä havaittu supernovajäänteistä. Nämä ”röntgenraidat” auttavat tutkijoita selvittämään kuinka kosmiset säteet syntyvät supernovajäänteissä.

Credit: NASA/CXC/Rutgers/K.Eriksen et al.

Viikon kuva (2): Syzygy

NASAn SDO-luotaimen ottama kuva auringonpimennyksestä, jossa luotaimen ja Auringon välissä on Maa. Rosoinen pinta alareunassa johtuu Maan ilmakehästä, jonka tiheydenvaihtelut päästävät Auringon säteilyn paikoittain läpi.

Credit: NASA/SDO


Tiedeviikko 6+7/11

Mustat aukot vastuussa reionisaatiosta?

Jos mustat aukot tuntuvat mielestäsi vihamielisiltä maailmankaikkeuden ainetta ja elämää kohtaan, imien sisuksiinsa ja tuhoten kaiken mikä erehtyy kulkemaan liian läheltä, niin et voisi olla enempää väärässä. Itseasiassa nykyiset maailmankaikkeuden mallit osoittavat, että varhaisen maailmankaikkeuden mustat aukot ovat todennäköisesti siemeniä, joiden ympärille galaksit muodostuivat. Uuden tutkimuksen mukaan näyttäisi myös siltä, että mustat aukot olisivat vastuussa ainakin osittain myös vielä varhaisemman maailmankaikkeuden ”faasimuutoksesta”, ns. reionisaatiosta. Reionisaatio on vaihe maailmankaikkeuden historiassa, joka alkoi kun ensimmäiset tähdet alkoivat muodostua neutraalin kaasun  tihentymiin ja päättyi maailmankaikkeuden ollessa noin miljardin vuoden ikäinen. Ensimmäiset tähdet olivat todennäköisesti todella suuria, koska neutraalit vety- ja heliumatomit helposti kasautuivat ja kerääntyivät yhteen. Intensiivinen säteily tähdistä lämmitti ja ionisoi nopeasti tähtienvälisen kaasun atomit synnyttäen harvaa ja kuumaa plasmaa. Todennäköisesti reionisaatio rajoitti muodostuvien tähtien kokoa, sekä uusien galaksien kasvua, koska kuumat, ionisoituneet atomit eivät kasaannu yhteen niin helposti kuin neutraalit atomit. Reionisaatio mahdollisesti vaikutti myös maailmankaikkeuden aineen jakaumaan, tehden siitä rypäsmäisemmän, eli koostuen yksittäisistä tähtirykelmistä, galakseista, eikä tasaisesta jakaumasta yksittäisiä tähtiä. Aikaisemmin tutkijat ovat ajatelleet, että ensimmäisten tähtien ionisoiva säteily aiheutti pääasiassa maailmankaikkeuden kaasun reionisaation, mutta uuden tutkimuksen mukaan mustilla aukoilla, tarkemmin ottaen mustilla aukoilla röntgenkaksoistähtijärjestelmissä, voi olla merkittävä osuus reionisaatiossa. Tietokonesimulaatioiden mukaan varhaisen maailmankaikkeuden jättiläistähdet luhistuivat enimmäkseen mustiksi aukoiksi ja vähemmän neutronitähdiksi tai valkoisiksi kääpiöiksi. Massiiviset tähdet myös muodostavat kevyempiä tähtiä helpommin useamman tähden järjestelmiä, joten mustat aukot sijaitsivat todennäköisesti useimmin jonkun tähden kumppanina kuin yksittäisinä mustina aukkoina. Tällaisissa kaksoistähtijärjestelmissä musta aukko alkaa nopeasti imeä materiaa kumppanitähden pinnalta. Materia kerääntyy mustan aukon ympärille nk. kertymäkiekoksi ja kuumenee kymmeniin miljooniin asteisiin säteillen energiaansa röntgensäteilynä. Röntgensäteily vastaavasti on erittäin ionisoivaa säteilyä, ja röntgenfotonit pystyvät ionisoimaan useampia atomeja verrattuna tähtien ultraviolettisäteilyyn, joiden fotonit pystyvät ionisoimaan yhden tai kaksi atomia kerrallaan. Näin ollen iso osa reionisaation aiheuttavasta säteilystä voi olla peräisin mustista aukoista, ja mustat aukot ovat olleet osana rakentamassa maailmankaikkeutta sellaiseksi kuin sen tänä päivänä näemme.

Tieteellinen artikkeli

Maailman prosessointikapasiteetti

Kuinka paljon informaatiota maailmassa lähetetään, prosessoidaan ja varastoidaan? Saadakseen jonkinlaisen arvion tutkijat ovat seuranneet 60 eri analogista ja digitaalista teknologiaa, sanomalehdistä kännyköihin, yli 20 vuoden ajan alkaen vuodesta 1986. Tulokset olivat osaltaan odotettavissa, esimerkiksi internet on syrjäyttänyt tiedonsiirrossa lähes kokonaan anologiset sekä digitaaliset puhelimet, ja osaltaan yllättäviä, kuten pelaamiseen tarkoitetuilla laitteilla on ollut aina enemmän laskentatehoa kuin kaikilla maailman supertietokoneilla yhteensä. Tutkimuksessa otettiin huomioon lähes kaikki mahdollinen tallennustila, esimerkiksi paperit, filmit ja vinyylit, kuin myös Blu-ray dvd:t ja muistikortit. Jotta eri medioita voidaan verrata keskenään, tutkijat käyttivät informaatioteoriaa muuttaen kaiken tallennustilan optimaalisesti pakatuiksi biteiksi. Näin ollen esimerkiksi kuuden neliösentin sanomalehtikuva vastaa tuhatta sanaa. 20 vuoden aikana tallennustilan määrä on kasvanut 23% joka vuosi, ollen parhaimmillaan lähes 300 eksabittiä, joka vastaa tallennustilana 61 CD:tä jokaiselle ihmiselle maailmassa. Vuonna 1986 yli puolet tallennustilasta oli analogisissa videoissa, ja neljäsosa vinyyleissä sekä kaseteissa. Vuoteen 1993 mennessä 86% kaikesta tallennustilasta oli videoissa. Vuonna 2000 CD:t ja erilaiset digitaaliset tallennusmediat alkoivat haastaa analogisen videon tallennuskapasiteettia, mutta silti vielä noin 70% tallennustilasta oli analogisissa videoissa. Vuoteen 2007 mennessä analoginen video oli pudonnut kuuten prosenttiin ja maailman tallennustilan oli ottanut haltuun digitaalinen tallennusmedia, kuten kovalevyt, DVD:t ja Blu-Ray:t. Kahdenvälisessä tiedonsiirrossa liikkui vuonna 2007 65 eksabittiä, kun taas televisiolähetyksissä liikkui hulppeat kaksi zetabittiä dataa. Vaikka televisiolähetykset ovat lisääntyneet lineaarisesti, niin internet on lisännyt lähetettyjen bittien määrää 29-kertaisesti seitsemän vuoden aikana kahdenvälisessä tiedonsiirrossa. Sen sijaan 40% maailman prosessointitehosta oli vuonna 1986 taskulaskimissa hakaten kotitietokoneet (33%) ja serverit (17%). Vuoteen 2000 mennessä taskulaskimet putosivat kokonaan listalta ja kotitietokoneet kohosivat maksimiinsa (86%). Vuonna 2007 mobiililaitteet nousivat kuuteen prosenttiin, kotitietokoneet laskivat kahteen kolmasosaan ja pelilaitteet kohosivat neljäsosaan prosessointitehosta. Tutkimuksessa tarkasteltiin myös pelkästään komponenttiavaruutta, jossa grafiikkaprosessorit hallitsivat ylivoimaisesti (97%) prosessointitehoa haukaten suurimman osan maailman prosessointitehosta, joka on 6.4 miljoonaa miljardia toimintoa sekunnissa. Jotta emme vallan tuudittautuisi tietokoneiden ylivaltaan, yllä mainittu maailman prosessointiteho, eli 6.4 miljoonaa miljardia toimintoa sekunnissa, vastaa suurinpiirtein ihmisaivojen neuroimpulssien määrää sekunnissa. Maailman tallennuskapasiteetti, noin 290 miljoonaa miljardia bittiä, vastaa sitä vastoin aikuisen ihmisen DNA:n tallennuskapasiteettia. Maailmassa on useita miljardeja ihmisiä. Mietipä sitä.

Tieteellinen artikkeli

Kilogramma

Credit: BIPM

Kuinka paljon painaa kilogramma? Kysymys voi tuntua hieman oudolta, mutta tällä hetkellä se on kuuma puheenaihe oikeissa piireissä. Kilogramma, siis se oikea kilogramma, sijaitsee holvissa lukemattomien lasikupujen alla Sèvresissä Ranskassa. Se on viimeinen SI-yksikkö, joka määritellään vielä fyysisen kappaleen mukaan, tässä tapauksessa kilogramman painoinen platinasta ja iridiumista valmistettu pallo. Esimerkiksi metri määritellään matkaksi, jonka valo kulkee tyhjiössä 1/299792458 sekunnissa, tai sekunti ajaksi, jossa cesium-133-atomi värähtelee 9192631770 kertaa. Nyt myös kilogramma haluttaisiin määritellä maailmankaikkeuden perussuureiden pohjalta. Kansainvälinen yhteistyöprojekti Project Avogadro on ottanut tehtäväkseen yrittää määrittää kilogrammaa Avogadron lukuun perustuen. Avogadron luku on siis atomien määrä yhdessä moolissa ainetta, eli noin 6.022 x 10²³ kappaletta. Ongelmana kuitenkin on, että emme tunne Avogadron lukua vielä tarpeeksi tarkasti, jotta se kelpaisi kilogramman määrittämiseen. Vaadittu tarkkuus edellyttää Avogadron luvun tuntemista 20 miljardisosan tarkkuudella. Jotta kyseinen tarkkuus pystytään saavuttamaan, Project Avogadro on valmistanut kaksi yksikiteistä palloa pii-28:sta, jotka painavat tarkalleen kilogramman ja ovat lähinnä täydellisintä palloa Maan päällä (täydellisin ihmisen valmistama pallo löytyy avaruudesta Gravity Probe B:n kyydistä). Mikäli yksi näistä palloista suurennettaisiin Maapallon kokoiseksi, olisi sen korkeimmalla ja matalimmalla kohdalla eroa vain 2.4 metriä. Selvittämällä pii-28:n moolitilavuuden ja pallon yhden kidehilan tilavuuden tutkijat määrittivät Avogadron luvuksi 6.02214078(18) x 10²³ atomia moolissa 30 miljardisosan tarkkuudella. Tämä ei kuitenkaan riitä vielä ihan kilogrammalle, mutta tutkijat uskovat, että ymmärtämällä paremmin pallojen hionnasta jääneitä epäpuhtauksia ja käyttämällä mittauksissa parempia interferometrejä vaadittu tarkkuus saavutetaan muutaman vuoden kuluessa. Sèvresin holvin vartijoiden täytyy siis vielä odotella, ennen kuin he pääsevät pelaamaan petankkia kilogrammalla.

Tieteellinen artikkeli

Viikon kuva: Mustien aukkojen ympyrä

Viikon kuvassa spiraaligalaksi (oikealla) on törmännyt elliptiseen galaksiin (vasemmalla), mikä on aiheuttanut massiivisen tähtiensyntyaallon spiraaligalaksissa muodostaen rengasmaisen kuvion (sininen väri vastaa ultraviolettisäteilyä). Osa tähdistä on räjähtänyt jo supernovana ja muodostanut mustia aukkoja, joista osa sijaitsee röntgenkaksoistähtijärjestelmissä ja säteileivät näin ollen voimakkaasti röntgenalueella (pinkit läntit renkaan sisällä).

Credit: NASA/STScI/CXC/MIT/S.Rappaport et al

Tiedeviikko 3+4/11

Tiedeviikko laahaa pahasti aikaansa jäljessä, joten on aika korjata tilanne. Tässä ensimmäiseksi viikot kolme ja neljä:

Kaukaisin galaksi

Vuoden ensimmäinen superlatiivi on kaukaisin galaksi. Tutkijat ovat löytäneet galaksin UDFj-39546284 (etukirjaimet tarkoittavat Hubble -avaruusteleskoopin pitkän valotusajan kuvia: Ultra Deep Field), joka on meistä 13.2 miljardin valovuoden päässä. Eli sen valo lähti liikkeelle, kun maailmankaikkeus oli vain 480 miljoonan vuoden ikäinen. Tutkijat arvelevat ensimmäisten galaksien muodostuneen maailmankaikkeuteen, kun se oli 200-300 miljoonan vuoden ikäinen, joten juuri havaittu galaksi ulottuu melkein ensimmäisten galaksien joukkoon. UDFj-39546284 on pieni galaksi, noin sata kertaa pienempi kuin Linnunrata, sisältäen pääosin sinisiä eli nuoria ja kuumia tähtiä. Galaksin etäisyys määriteltiin ns. poissulkumenetelmällä, jossa galaksin kuumien tähtien säteilemän ultraviolettisäteilyn absorptio meidän ja galaksin välisessä vetypilvessä siirtyy maailmankaikkeuden laajenemisen johdosta pidemmille aallonpituuksille. Ultraviolettisäteily on tarpeeksi energeettistä säteilyä, jotta se voi ionisoida vetyä eli potkaista elektronin pois vetyatomin kuorelta. Törmätessään vetypilveen ultraviolettisäteily jää meiltä kokonaan havaitsematta sen jäädessä ionisoimaan vetypilven vetyä. Toisaalta galaksista säteilevä optinen säteily ei kykene ionisoimaan vetyä ja pääsee kulkemaan esteettä Maahan saakka. Maailmankaikkeuden laajenemisen johdosta säteilyn aallonpituus pitenee eli punasiirtyy, joten myös UDFj-39546284:n säteily, mukanaan ultraviolettisäteilyn absorptioalue, punasiirtyy. Havaitsemalla millä aallonpituuskaistalla galaksi ei näy saadaan karkea arvio galaksin punasiirtymästä, josta voidaan vastaavasti laskea galaksin etäisyys. Tutkimusryhmän tekemissä aikaisemmissa tutkimuksessa löydettiin 47 galaksia hieman lähempää, noin 13 miljardin valovuoden päästä. Juuri löydetyn galaksin ja aikaisemmin havaittujen galaksin välinen aikaero on kuitenkin maailmankaikkeuden mittapuulla mitattuna pieni, muutama sata miljoonaa vuotta, joten galaksien kehityksessä tapahtui tänä aikajaksona suuri harppaus. Ensimmäisen 170 miljoonan vuoden aikana tähtisyntynopeus kymmenkertaistui ja sitä seuraavan 130 miljoonan vuoden aikana se kymmenkertaistui uudellen. Tulos vahvistaa tutkijoiden käsitystä galaksien muodostumisesta maailmankaikkeudessa, missä galaksit kasvavat ja törmäilevät toisiinsa pimeän aineen vaikutuksen alaisena.

Tieteellinen artikkeli

Kosminen röntgentaustasäteily

Credit: NASA/Goddard Space Flight Center

 

Kun on puhe kosmisesta taustasäteilystä, mieleen juolahtaa ensimmäisenä mikroaaltotaustasäteily, mutta maailmankaikkeus hehkuu myös muilla aallonpituusalueilla, esimerkiksi röntgenalueella. Suurin osa kosmisesta röntgentaustasäteilystä ajatellaan syntyvän aktiivisten galaksien keskustoissa majailevien supermassiivisten mustien aukkojen ympäriltä. Ongelmana on kuitenkin ollut, että aktiivisia galakseja ei ole tähän mennessä havaittu tarpeeksi, jotta koko röntgentaustasäteily pystyttäisiin selittämään. Uuden tutkimuksen mukaan meiltä onkin jäänyt laskematta viidesosa kaikista aktiivisista galakseista. Käyttäen NASA:n Swift -röntgesatelliittia tutkijat ovat löytäneet uuden aktiivisten galaksien joukon, joiden säteily on erittäin himmeää. Aktiivisissa galakseissa materiaa putoaa hiljalleen supermassiiviseen mustaan aukkoon, josta osa linkoutuu magneettikenttien vaikutuksesta pois mustan aukon navoilta muodostaen erittäin energeettiset hiukkassuihkut samaan tapaan kuin mikrokvasaareissa (kts. mustien aukkojen olemisen sietämätön keveys). Mikäli katsomme enemmän tai vähemmän suoraan hiukkassuihkua päin, kutsumme kohdetta kvasaariksi tai blasaariksi, jotka ovat maailmankaikkeuden kirkkaimpia kohteita. Sitä vastoin jos katsomme galaksia sivusta, peittää galaksin kiekko keskustan supermassiivisen mustan aukon ja säteily himmenee matkalla galaksin reunalle huomattavasti. Ultravioletti-, optinen ja ns. pehmeä röntgensäteily (noin 1 keV tai 500 kertaa näkyvää valoa energisempi) absorboituu kokonaan galaksin aineeseen. Infrapunasäteily pääsee kulkemaan galaksin läpi, mutta se saattaa sekoittua galaksin tähtiensyntyalueista säteilevään infrapunasäteilyyn. Niinpä ainoa galaksin läpäisevä supermassiivisen mustan aukon säteily on ns. kova röntgensäteily (noin 20 keV tai 10000 kertaa näkyvää valoa energisempi). Swiftin koko taivaan röntgenkartasta tutkijat valitsivat 199 aktiivista galaksia, jotka eivät sijainneet liian lähellä Linnunradan tasoa, ja joilla ei ollut hiukkassuihkuja näkyvillä. Näistä galakseista tutkijat päätyivät yhdeksään galaksiin, jotka kuuluvat uuteen aktiivisten galaksien joukkoon. Jopa Swiftillä oli ongelmia havaita näitä yhdeksää galaksia, joten todennäköisesti siltä jää suurinosa galakseista tästä erittäin himmästä aktiivisten galaksien ryhmästä havaitsematta. Ottaen satelliitin havaitsemisherkkyyden huomioon, tutkijat arviovat uuden galaksiryhmän sisältävän 20-30 prosenttia kaikista aktiivisista galakseista. Ensimmäistä kertaa tutkijat pystyivät myös mittaamaan näiden galaksien röntgenspektrin, jonka perusteella galaksit näyttäisivät muodostavan kosmisen röntgentaustasäteilyn huipun (kts. kuva yllä). Uusi löytö tukee teoriaa röntgentaustasäteilyn synnystä, jonka mukaan se on peräisin himmeistä, galaksin suojissa piileskelevistä supermassiivisista mustista aukoista, kun maailmankaikkeus oli noin seitsemän miljardin vuoden ikäinen.

Tieteellinen artikkeli

Askel kohti kvanttitietokoneita: 10 miljardin hiukkasparin kvanttilomittuminen

Tutkijat ovat onnistuneet kvanttilomittamaan 10 miljardia hiukkasta kerralla menetelmällä, joka käyttää fosfori-rikastettua piitä, mikro- ja radioaaltopulssia. Tutkijat onnistuivat kvanttilomittamaan 98% kaikista mahdollisista hiukkaspareista, ja vaikka lomittuneiden hiukkasten hallitseminen on vielä hyvin rajallista, on hiukkasten massalomittuminen askel kohti kvanttitietokoneita. Koejärjestely sisälsi piikuution rikastettuna fosfori-ioneilla, jossa fosforiatomin ydin ja yksi sen elektroneista (joka muodostaa sidoksen piiatomin kanssa) muodosti kvanttilomitettavan hiukkasparin. Puolijohteeseen, kuten piihin, sekoitettuna fosforiytimen ja elektronin kvanttilomittuminen saadaan kestämään sekunteja kerrallaan verrattuna muihin materiaaleihin, joissa kvanttilomittuminen hajoaa sekunnin tuhannesosassa tai lyhyemmässä ajassa. Tutkijat tarvitsivatkin ylimääräistä aikaa saadakseen kaikki hiukkaset käyttäytymään samalla tavalla. Mikroaaltopulssilla hiukkasten kvanttimekaaninen aaltofunktio saadaan sopivaan tilaan, jotta sitä seuraava radioaaltopulssi pystyy kvanttilomittamaan hiukkaset. Jotta kvanttilomittuneita hiukkasia voitaisiin käyttää kvanttitietokoneiden kubitteina, täytyisi niitä pystyä vielä lukemaan ja kirjoittamaan. 10 miljardia hiukkasta tarjoaisi kuitenkin jo mukavat 2.5 gigabittiä muistia, joten tutkimus on ehdottomasti askel eteenpäin kohti kvanttitietokoneita.

Tieteellinen artikkeli

Viikon kuva

Tieteellisen yhteistyön maailman kartta (hieman suurempi kuva täällä).

Credit: O. Beauchesne

 


Tiedeviikko 2/11

Uusi vuosi on lähtenyt hyvää vauhtia käyntiin ainakin tieteen osalta, ja jos sama tahti jatkuu niin luvassa on erityisen mielenkiintoinen tiedevuosi. Juuri Helsingissä loppuneet Tieteen Päivät painottuivat arkeen ja tämän kertaisessa tiedeviikossa selviää, että jokaisen arjessa on mukana eksotiikkaa ainakin tieteellisessä mielessä, nimittäin antimateriaa ja suhteellisuusteoriaa.

Ukkosmyrskyt sinkoavat antimateriaa avaruuteen

Credit: NASA

 

Tutkijat ovat havainneet käyttäen NASA:n gammasädesatelliitti Fermiä, jonka leipätyö on mm. havaita gammasäteitä kaukaisissa galakseissa tapahtuvien supermassiivisten tähtien räjähdyksistä, gammasäteitä huomattavasti läheisemmästä kohteesta, nimittäin Maasta. Eikä mitä tahansa gammasäteitä, vaan juuri tietyn energistä (511 keV) säteilyä, joka syntyy kun elektroni ja sen antihiukkanen, positroni, törmäävät ja tuhoavat toisensa. Kyseessä on ensimmäinen suora havainto ilmiöstä, jonka tutkijat ovat ajatelleet syntyvän ukkosmyrskyissä. Havaintojen perusteella näyttäisi siltä, että ukkosmyrskyt tuottavat jatkuvasti antimateriasuihkuja salamien sivutuotteena nk. maanpäällisissä gammasädevälähdyksissä. Sopivissa olosuihteissa voimakkaat sähkökentät lähellä ukkosmyrskyn huippua voivat laukaista ylöspäin suuntautuvan korkeaenergisen vyöryn elektroneja, jotka kohdatessaan ilmakehän molekyylejä muuttavat suuntaa lähettäen jarrutussäteilyä, jonka energia on gamma-alueella. Vastaavasti nämä gammasäteet törmäävät elektroneihin kiihdyttäen ne lähelle valonnopeutta, tai ne sattuvat kulkemaan läheltä atomin ydintä, jolloin gammasäde muuttuu elektroni-positronipariksi. Juuri syntyneet korkeaenergiset elektronit ja positronit pääsevät karkaamaan avaruuteen liikkuen pitkin Maan magneettikentän voimaviivoja, jossa ne voivat törmätä esimerkiksi gammasädesatelliittiin. Itseasiassa gammasädesatelliitin ei tarvitse edes nähdä koko ukkosmyrskyä vaan riittää, että se on magneettisesti kytköksissä siihen. Näin tapahtui 14. päivä viime joulukuussa, kun Fermi havaitsi positroniryöpyn Egyptin yllä, vaikka ukkosmyrsky ja gammasädevälähdys tapahtui 4500 kilometriä etelämpänä Sambian yläpuolella. Positroniryöppy jatkoi vielä matkaansa magneettikentän voimaviivaa pitkin magneettiseen pullonkaulaan, josta se heijastui ja osui matkallaan takaisin uudelleen satelliittiin (kts. kuva alla oikealla).

Credit: NASA

Kun positronit törmäävät satelliittien elektroneihin, ne tuhoutuvat välittömästi tuottaen yllämainittua 511 keV:n gammasäteilyä. Maapallolla on jokaisella ajanhetkellä käynnissä ukkosmyrskyjä noin pari tuhatta kappaletta ja gammasädevälähdyksiä arvioidaan tapahtuvan noin 500 päivässä, tosin useimmat näistä jäävät havaitsematta. Esimerkiksi Fermi on havainnut vasta 130 gammasädevälähdystä vuodesta 2008 lähtien. Mutta seuraavan kerran kun katselet ukkosmyrskyä ja komeaa salamatykitystä, voit hyvällä tuurilla samanaikaisesti ihailla luonnon omaa antimateriakonetta toiminnassa.

Credit: NASA

Einstein käynnistää autosi

Yleensä puhuttaessa suhteellisuusteoriasta mieleen tulee lähes valonnopeudella liikkuvat junanvaunut tai avaruusalukset, joissa aika hidastuu, pituudet muuttuvat ja samanaikaiset tapahtumat tapahtuvat eri aikaan. Näiden ajatusleikkien pohjalta on vaikea kuvitella suhteellisuusteorian vaikuttavan jokapäiväisessä elämässämme, mutta uuden tutkimuksen mukaan näin todellakin on asian laita. Physical Review Letterissä julkaistussa artikkelissa, jossa myös oli suomalaisia mukana Helsingin Yliopiston kemian laitokselta, väitettiin, että suhteellisuusteoriaa tarvitaan auton käynnistämisessä. Mistä siis on oikein kyse? Suhteellisuusteoria täytyy ottaa huomioon kun tarkastellaan elektronien liikettä raskaiden atomien ytimien ympärillä. Mitä raskaampi ydin sitä nopeammin sisimmät elektronit kiertävät ydintä. Kun nopeudet lähenevät valonnopeutta suhteellisuusteoreettiset vaikutukset tulevat mukaan kuviohin, ja raskaansarjan atomeilla, esimerkiksi lyijyllä, ulommaisten elektronien energiatasot muuttuvat tämän johdosta. Lyijyä sattuu löytymään paljon myös auton akuista, joka tuottaa sähköä reagoidessaan rikkihapon kanssa. Tutkijat mallinsivat sähkökemiallisia reaktioita ja totesivat suhteellisuusteorian olevan vastuussa 1.7-1.8:sta perusakun lyijyparin 2.11 voltista. Toisin sanoen ilman suhteellisuusteoriaa autosi ei käynnistyisi.

Tieteellinen artikkeli

Planckin ensimmäiset tulokset

Vuonna 2009 laukaistu Euroopan avaruusjärjestö ESA:n Planck-luotaimen ensimmäiset tiedeartikkelit ovat viimein julkaistu. Näistä mikään ei vielä käsittele luotaimen varsinaista tutkimuskohdetta, mikroaaltotaustasäteilyä, jonka tuloksia joudumme odottamaan vuoteen 2013 asti, vaan nk. etualan kohteita. Eli käytännössä kaikkea sitä, mitä on meidän ja taustasäteilyn välissä. Kaiken kaikkiaan Planck-tutkijat julkaisivat 25 artikkelia (jotka ovat luettavissa täällä), joista osa käsittelee Planckin instrumenttien toimintaa, datan prosessointia, datajulkaisua kompakteista kohteista ja loput sisältävät ensimmäisen analyysin etualan kohteista. Kohokohdat näistä ovat:

1) Tutkijoille on ollut jo pitkään selvää, että suurin osa maailmankaikkeuden tähdistä syntyy paikoissa, joita ympäröi paksu pölypilvi, joka estää näkyvän valon kulkeutumisen tähdistä meille saakka. Pölypilven sisällä sijaitsevat tähdet kuitenkin lämmittävät niitä ympäröivän pölyn huomattavasti kuumemmaksi kuin pöly, joka sijaitsee kaukana tähtiensyntyalueilta. Lämmin pöly säteilee Planckin kattamilla taajuusalueilla siirtyen punasiirtymän ansiosta matalemmille taajuuksille mitä kauempana galaksi meistä sijaitsee. Ensimmäistä kertaa Planck on havainnut tätä kosmista infrapunataustasäteilyä galaksien tähtiensyntyalueilta, jotka muodostuivat kun maailmankaikkeus oli noin kaksi miljardia vuotta vanha. Alla kuva kosmisesta infrapunataustasäteilystä kuudessa eri paikassa Planckin koko taivaan kartalla.

Credit: ESA / Planck Collaboration

2) Toinen mielenkiintoinen tulos koskee pölyä omassa galaksissamme. Nk. epätavallinen etualan mikroaaltosäteily (tai Foreground X), joka on diffuusia hehkua tiheistä ja pölyisistä alueista Linnunradassa, on askarruttanut tutkijoita jo vuosikymmeniä, mutta Planck näyttäisi tukevan teoriaa, jossa säteily tulisi nopeasti pyörivistä, pitkulaisista pölyhiukkasista. Alla kuva, jossa pyörivien pölyhiukkasten lähettämä säteily 30 GHz taajuusalueella vastaa pölyn lämpösäteilyn alueita 857 GHz taajuusalueella.

Credit: ESA / Planck Collaboration

3) Yo. tulosten lisäksi Planck on löytänyt uusia supergalaksijoukkoja niiden aiheuttaman nk. Sunyaev-Zel’dovitchin vaikutuksen kautta. Supergalaksijoukkojen Sunyaev-Zel’dovitchin vaikutus näyttäytyy Planckille kompakteina ja kylmempinä tai kuumempina (riippuen taajuudesta) kohteina mikroaaltotaustasäteilykartassa. Supergalaksijoukot ovat harvinaisia ja niiden määrä maailmankaikkeudessa kertoo meille universumimme koostumuksesta, kuinka nopeasti se laajenee, ja kuinka paljon materiaa se sisältää. Alla kuva juuri havaitusta, uudesta supergalaksijoukosta PLCK G214.6+37.0, joka on ensimmäinen Planckin havaitsema supergalaksijoukko. Vasemmalla Planckin havaitsema joukon Sunyaev-Zel’dovitchin vaikutus (punainen läiskä keskellä) ja oikealla ESA:n XMM-Newton -röntgensatelliitin kuva, joka paljastaa supergalaksijoukon koostuvan kolmesta galaksijoukosta.

Credit: ESA / Planck Collaboration

Lyhyesti:

Rapusumu

Rapusumun gammapurkausten arvoitus näyttäisi saavan jatkoa (kts. alustus Tiedeviikko 40/10:stä). NASA:n gammasädesatelliitti Fermin ja Italian avaruusjärjestö ASI:n gammasädesatelliitti AGILE:n tutkimusryhmät ovat julkaisseet artikkelin Science-lehdessä, joissa molemmissa päädytään samaan tulokseen: Rapusumun gammasädepurkausten syy on varattujen hiukkasten synkrotronisäteily. Synkrotronisäteilyä syntyy kun sähkömagneettiset kentät muuttavat varattujen hiukkasten ratoja, saaden ne säteilemään energialla, joka on verrannollinen hiukkasten nopeuteen. Fermin ja AGILEn mittaamat hiukkaset säteilevät kuitenkin PeV:n (siis Petaelektronivoltti) energialla, joten hiukkaset Rapusumussa liikkuvat todella, todella nopeasti (LHC on Rapusumun rinnalla lasten leikkiä). Itseasiassa niin nopeasti, että molempien tutkimusryhmien tutkijat ovat ymmällään, kuinka koko hiukkaskiihdytinprosessi Rapusumussa toimii.

Tieteellinen artikkeli 1 ja 2

Maa + 0.4

NASA:n Kepler -avaruusteleskooppi on löytänyt tähän mennessä pienimmän eksoplaneetan, jonka halkaisija on 1.4 kertaa Maan halkaisija. Eksoplaneetta Kepler-10b on kuitenkin huomattavasti massiivisempi (noin 4.6 Maan massaa) ja kuumempi, sillä se kiertää emotähteään lähempänä kuin Merkurius Aurinkoa. Kepler 10b ei missään nimessä ole elinkelpoinen millekään elämänmuodolle, mutta löytö osoittaa Keplerin olevan kunnossa metsästämään lisää Maan kokoisia planeettoja.

NASA:n lehdistöjulkaisu

Viikon kuva: Terapikselin kokoinen potretti universumista

Alhaalla koko taivas Sloan Digital Sky Survey III:n kuvaamana pohjoisella ja eteläisellä pallonpuoliskolla (universumin rakenne näkyvissä selvästi) ja ylhäällä zoom emissiosumu NGC 604:ään. Katso myös tämä video.


Viikon video: Osittainen Auringon pimennys radioteleskoopin (Metsähovi) silmin



Tiedeviikko 44/10

Marsin värikäs dyynikokoelma

Credit: NASA/JPL/University of Arizona

 

Mars Reconnaissance Orbiterin HiRISE -kameran ottamat kuvat Marsin pinnasta ovat olleet järisyttävän hienoja, mutta tällä hetkellä yksi kiinnostavimmista kohteista ovat Marsin dyynit. HiRISE:n dyynikuvia katsellessa on selvää, että Mars on täysin erilainen maailma kuin Maa, mutta samalla dyyneistä löytyy myös samankaltaisuuksia Maan päällisten versioiden kanssa. Onhan molemmista vastuussa sama ilmiö: tuuli. Yo. kuva on noin 150 kilometriä leveästä Proctor -kraaterista ja silmiinpistävintä siinä ovat valtavat, matomaiset ja kiiltävän mustat dyynit pienempien dyynien ja lohkareiden päällä. Aikojen saatossa Marsin vulkaaninen toiminta on muodostanut basalttista kiveä sen pinnalle, joka myöhemmin on tuulen aiheuttaman eroosion kautta hajonnut hienojakoiseksi basalttiseksi hiekaksi. Tuulen kuljettama hiekka on vastaavasti kasautunut kraaterin pohjalle, jossa se on hiljattain muodostanut mustia basalttihiekkadyynejä kraaterin pohjalle. Dyynit ovatkin Marsin yksi dynaamisimmista geologisista prosesseista. Valtavia, paljon suurempia kuin Maan päällisiä dyynejä pystyy muodostumaan Marsin pinnalle sen harvan ilmakehän ja heikomman painovoiman ansiosta, kun tuulen puhaltaessa hiekanjyviä ne ”pomppaavat” sata kertaa korkeammalle ja pidemmälle, sekä kymmenen kertaa nopeammin kuin Maan pinnalla. Alla muutama poiminta HiRISEn dyynikokoelmasta:

Credit: NASA/JPL/University of Arizona

Hannyn Voorwerp ja kvasaarin kaiku

Credit: WIYN/William Keel/Anna Manning

 

Galaxy Zoo on kansalaistiedeprojekti, jossa kuka tahansa voi osallistua tähtitieteen tekemiseen luokittelemalla galakseja. Yksi suurimmista löydöistä projektissa on tähän mennessä ollut hollantilaisen Hanny Van Arkelin huomaama omituisen näköinen vihreä suttu erään galaksin alapuolella. Tarina löydöstä tuli niin tunnetuksi, että siitä on tehty jopa sarjakuva (pdf, 35 MB). Vihreä suttu, nimeltään Voorwerp (”kohde” hollanniksi), löytyy myös aikaisemmista vuosia sitten otetuista kuvista, mutta kukaan ei tähän mennessä ollut kiinnittänyt siihen huomiota. Oudolle kohteelle ei myöskään löytynyt heti selitystä. Kyseessä on kaasupilvi noin 70000 valovuoden päässä lähellä sijaitsevasta galaksista, mutta erityisesti sen vihreä väri (täysin vihreät kohteet ovat maailmankaikkeudessa harvinaisia) sekä kaasupilveä valaisevan säteilylähteen puuttuminen on tuonut päänvaivaa tutkijoille. Viereinen galaksi sijaitsi kuitenkin sen verran lähellä, että sen keskustassa sijaitseva kvasaari voisi olla vastuussa kaasupilven energisoimisesta. Niinpä tutkijat suuntasivat röntgenteleskoopit Suzakun ja XMM-Newtonin kohti galaksin keskustaa, jossa oletettavasti keskustan supermassiiviseen mustaan aukkoon putoaa jatkuvasti materiaa, joka kuumenee miljooniin asteisiin säteillen röntgensäteilyä ympäristöön. Tutkijat havaitsivatkin keskustasta röntgensäteilyä, mutta se oli 10000 kertaa himmeämpää kuin mitä kaasupilven valaisemiseen olisi tarvittu. Niinpä tutkijat päättelivät, että kvasaari galaksin keskellä on sammunut, mutta me vielä näemme sen viimeisen valon heijastuksen kaasupilvestä. Myöskään muita selityksiä Voorwerpille ei voida sulkea pois, mutta kvasaari säteilylähteenä selittää kohteesta havaitun spektrin rakenteen muita mahdollisia säteilylähteitä paremmin. Kaasupilven vihreä väri johtuu suuresta määrästä ionisoitunutta happea, mutta spektristä löytyi myös kapeita heliumin ja neonin emissioviivoja, jotka sulkevat pois tähtiensynnyn tai shokkiaaltojen aiheuttamat spektrit, joissa kyseiset emissioviivat olisivat Doppler-levinneet. Vaihtoehtoisesti kvasaarista suoraan Maahan päin tuleva säteily voi absorboitua ja näin ollen himmentää kvasaarin kokonaissäteilyä vaadittavan määrän. Tutkijat pystyivät kuitenkin sulkemaan pois tämänkin vaihtoehdon, koska röntgenspektrin raudan emissioviivaa ei havaittu, mikä kielisi kvasaarin valon absorptiosta. Niinpä kvasaarin sammuminen jäi ainoaksi vaihtoehdoksi ja Voorwerp olisi täten sammuneen kvasaarin optinen kaiku. Kvasaarin nopea sammuminen ei sinällään ole yllättävää, sillä nyky-maailmankaikkeudessa jopa galaksien keskustan aine on suhteellisen harvaa ja kvasaarit eivät voi pitää jatkuvasti intensiivistä säteilyä yllä. Myös Linnunradassa sijaitsevat kvasaarien pikkusisaret, mikrokvasaarit, voivat sammua noin vuodeksi kerrallaan, mikä skaalautuu kvasaareille 10000-100000 vuoteen sopien Voorwerpin etäisyyteen läheisestä kvasaarista. Yllättävää tuloksessa kuitenkin oli, että vaikka kvasaari sammuu, sitä ympäröivän kertymäkiekon aineen jäähtymiseen kuluisi huomattavasti enemmän aikaa kuin vaadittu 70000 vuotta. Niinpä kertymäkiekon on täytynyt olla huomattavasti pienempi mitä nykyiset kvasaarimallit antavat olettaa.

Tieteellinen artikkeli

Hologrammit

Credit: gargaszphotos.com/University of Arizona

Jos artikkelin toinen lause kuuluu, että (vapaasti suomennettuna) kolmiulotteisen etäläsnäolon käsite, reaaliaikainen ja dynaaminen hologrammi, on herättänyt kiinnostusta yleisössä aina siitä lähtien kun se esiintyi alkuperäisessä Star Wars elokuvassa, luvassa on jotain mielenkiintoista. Toistaiseksi tuo vuonna 1977 esitelty idea ei ole vielä toteutunut käytännössä. Nyt scifistä alkaa kuitenkin tulla todellisuutta kun yhdysvaltalainen tutkimusryhmä esitteli hologramminäyttönsä, joka toisti verkon välityksellä hologrammeja suhteellisen nopeaan tahtiin, yhden hologrammin kahdessa sekunnissa, tosin varsinaisesta reaaliaikaisesta ”videopuhelimesta” ei voida vielä puhua. Tutkimusryhmän hologramminäyttö on tehty orgaanisesta polymeeristä, joka muuttaa heijastusominaisuuksiaan paikallisesti kun sitä valaistaan laserilla, tehden mahdolliseksi monimutkaisten interferenssikuvioiden, eli hologrammin, muodostumisen näyttöön. Näyttöön suunnattu laservalo koostuu nanosekuntien pulsseista, jotka hajotetaan tarpeeksi moneksi säteeksi, jotta sata hogelia (hologrammin elementti, eräänlainen kolmiulotteinen pikseli) voidaan valaista kerrallaan yhdellä pulssilla. Laserpulssien taajuus on 50 Hz, mikä mahdollistaa ”nopean” virkistystaajuuden. Tutkijat osoittivat myös pystyvänsä tekemään värikkäitä hologrammeja käyttäen useampaa laseria, mutta muuttaen jokaisen laserin valotusaikaa ja polarisaatiota, jotta ne eivät interferoisi keskenään. Varsinainen etäläsnäolo saatiin tutkimuksessa aikaiseksi kuvaamalla kohdetta 16 perinteisellä kameralla ja lähettämällä kuvat verkkoa pitkin koneeseen, joka muodosti niistä kolmiulotteisen mallin ja käytti sitä ohjaamaan lasereita, jotka piirsivät lopullisen kolmiulotteisen hologrammin näytölle.

Tieteellinen artikkeli

Viikon video: Leijuva kuutio



Tiedeviikko 42+43/10

Syysjumitus on iskenyt itse kuhunkin, mutta tässä viimeisen kahden viikon kohokohdat:

Mandelbrot

Matemaatikko Benoit Mandelbrot, joka on parhaiten tunnettu fraktaaligeometrian isänä, kuoli lokakuun 14. päivä 2010, 85 vuoden ikäisenä. Mandelbrot löysi matemaattisen kuvauksen fraktaalimuodoille – muodoille, joiden osat muistuttavat kokonaisuutta. Fraktaaleja ovat esimerkiksi jonkin valtion rantaviiva, parsakaalin nuput, saniaisen lehdet tai pörssikurssien heilahtelut. Suurennus jostakin yksityiskohdasta fraktaaleissa ei paljasta yksinkertaisempaa rakennetta, vaan loputtoman ja samankaltaisen monimutkaisuuden kuin miltä alkuperäinen muoto näyttää. Mandelbrot keksikin nimen fraktaali latinan sanasta fractus, rikkonainen. Fraktaaligeometria ei ole vain kaunista, vaan sitä käytetään laajasti eri tieteenaloilla, mm. mallintamaan turbulenssia, finanssijärjestelmiä ja galaksien jakautumista maailmankaikkeudessa. Matemaattisesti fraktaalin voi kuvata erittäin yksinkertaisesti, esimerkkinä olkoon Mandelbrotin joukko, jonka määritelmä on seuraavanlainen: ota mikä tahansa kompleksiluku (koskaan ei ole liian myöhäistä opetella niiden käyttöä, ja nyt siihen on hyvä syy) ja tee sille seuraavanlainen testi: mikäli lukusarja kn+1 = kn2 + t (k on lukusarjan muodostavat kompleksiluvut, t on testattava kompleksiluku ja n juoksee nollasta niin pitkälle kuin laskijalla riittää puhtia) kasvaa rajatta aina äärettömään (tai miinus-äärettömään) asti, t ei kuulu Mandelbrotin joukkoon. Esimerkiksi luku t=1 (myös reaaliluvut ovat kompleksilukuja, joiden imaginääriosa on nolla) tuottaa seuraavan sarjan: 0,1,2,5,26,677,458330…, joten näyttäisi siltä, että lukujoukko kasvaa rajatta ja näin ollen luku 1 ei kuulu Madelbrotin joukkoon. Vastaavasti, jos lukusarja ei kasva rajatta vaan jää toistamaan itseään hamaan laskutarkkuuden loppuun saakka, kuuluu t Mandelbrotin joukkoon. Esimerkiksi luku t=0 tuottaa sarjan 0,0,0,0,0… ja on täysin varmaa, että se ei siitä miksikään muutu, joten luku 0 kuuluu Mandelbrotin joukkoon. Vastaavasti luku t=i, missä i on imaginääriyksikkö (määritellään i*i=-1)  tuottaa sarjan 0,i,(-1+i),-i,(-1+i),-i…, joten luku i kuuluu myös Mandelbrotin joukkoon. Sitten vain käydään läpi kaikki kompleksitason luvut halutulla tarkkuudella ja väritetään taso kahdella värillä, mustalla mikäli testiluku kuuluu tai valkealla mikäli se ei kuulu Mandelbrotin joukkoon. Tietokoneen ruksuttaessa hetken aikaa, tulokseksi saadaan seuraavanlainen kuva:

Yleensä lisäten estetiikkaa ja tuoden paremmin esiin lukusarjojen matemaattisen käyttäytymisen pisteet voidaan värittää eri tavalla riippuen siitä, kuinka nopeasti lukusarja ylittää ns. pakopisteen. Mandelbrotin joukon pakopiste on 2 sekä reaali- että imaginääriosalla. Lähellä joukkoa sijaitsevilla luvuilla voi mennä hyvinkin pitkään ennen kuin pakopiste sarjassa ylittyy, tällöin luku väritetään esim. tummalla värillä. Vastaavasti nopeammin pakopisteen ylittävät luvut väritetään asteittain vaaleammilla väreillä. Tulokseksi saadaan hyvinkin kaunista visuaalista matematiikkaa. Alla yksi suurennusmatka Mandelbrotin joukkoon:

Vanhin galaksi

Credit: NASA, ESA, G. Illingworth (UCO/Lick Observatory and University of California, Santa Cruz) and the HUDF09 Team

 

Vanhin koskaan havaittu galaksin on nyt nimeltään UDFy-38135539. Tähtitieteilijät ovat havainneet tähän mennessä vanhimman galaksin yhdessä Hubble Ultra Deep Field -kuvassa. Kärpäsenkakan kokoisen läntin valo (punaisen ympyrän keskellä yo. kuvassa) on lähtenyt liikkeelle yli 13 miljardia vuotta sitten, kun maailmankaikkeus oli hyvin nuori. Galaksin punasiirtymäksi Hubblen kuvassa mitattiin oletusarvoisesti 8.6, mutta sama data pystyttiin selittämään myös punasiirtymällä 2.12 ja olettamalla galaksi epätavallisen nuoreksi. Selvittääkseen kumpi tulos oli kyseessä tutkijat havaitsivat galaksia ESO:n VLT -teleskoopilla ja mittasivat erityisesti galaksin valon spektriä. Spektrissä esiintyvistä emissioviivoista erityisen mielenkiintoinen on Lyman-α viiva, joka syntyy kun elektroni putoaa vetyatomissa virittyneestä tilasta (kvanttitila n=2) takaisin perustilaan (n=1). Koska atomien sallitut paikat elektroneille ovat kvantittuneita, syntyy tästä prosessista aina saman energian omaavia fotoneita. Vastaavasti kun näitä prosesseja tapahtuu hyvin monta, ylittävät fotonit määrällään ”taustakohinan” fotonit ja alamme havaita energiapiikkiä galaksin valon spektrissä. Koska vetyatomin Lyman-α viivan energia on mitattu laboratoriossa hyvin tarkasti, voimme verrata sitä galaksin valosta mitattuun Lyman-α viivan energiaan ja saada selville kuinka paljon sen energia on vähentynyt maailmankaikkeuden laajenemisen seurauksena. Energiaerotuksesta vastaavasti saadaan suoraan selville galaksin valon punasiirtymä ja näin ollen galaksin ikä. Tutkijat havaitsivat galaksista mitatun Lyman-α viivan energian olevan 11615.6±2.4 Å (1 Ångström = 0.1 nm = 10−10 m) vastaten punasiirtymää 8.5549±0.0002, joka sopivasti osuu Hubblen arvioon varmistaen UDFy-38135539:lle maailmankaikkeuden vanhimman kohteen tittelin. Havainto on merkittävä myös maailmankaikkeuden kehityshistorian kannalta. UDFy-38135539 kuuluu maailmankaikkeuden ensimmäisiin galakseihin, jotka ovat vastuussa ns. reionisaatio-aikakaudesta, joka alkoi noin 150 miljoonaa vuotta alkuräjähdyksen jälkeen ja loppui noin miljardi vuotta alkuräjähdyksen jälkeen, jolloin ultraviolettisäteily ensimmäisistä tähdistä ja galakseista ionisoi neutraalia vetyä. Maailmankaikkeuden laajetessa törmäykset atomien välillä harvenivat ja ionisoituneesta vedystä muodostui kylmä ja harva plasma kaikkialle maailmankaikkeuteen, kuten sen tänä päivänä havaitsemme. Havaitsemalla UDFy-38135539:n kaltaisia galakseja reionisaatio-aikakaudelta tutkijat pystyvät paremmin luotaamaan mitä oikein tapahtui tuona ajanjaksona, miksi galaksit muodostuivat niinkin aikaisin alkuräjähdyksen jälkeen, muodostuivat tähdet vai galaksit ensin tai muodostuivatko ne kenties samanaikaisesti.

Tieteellinen artikkeli

Neutronitähden ja mustan aukon häilyvä massaraja sekä aineen äärimmäinen olomuoto

Credit: Bill Saxton, NRAO/AUI/NSF

 

Neutronitähdet ovat yksi maailmankaikkeuden tiheimmistä kappaleista. Tähden räjähtäessä supernovana sen tiheä ydin luhistuu kasaan pusertaen tähden atomien ytimien elektronit niiden protoneihin. Jos ytimen massa on sopiva, juuri muodostuneiden neutronien välinen vahva vuorovaikutus ja degeneraatiopaine estää ytimen luhistumisen mustaksi aukoksi jättäen neutronitähden muistomerkiksi supernovasta. Neutronitähdet ovat juuri siksi erityisen mielenkiintoisia, koska pystymme tutkimaan ainetta äärimmäisen paineen alla, verrattuna mustiin aukkoihin, joiden sisältämä aine katoaa tapahtumahorisontin taakse jättäen tutkijoille havaittavaksi vain mustan aukon massan ja pyörimisnopeuden. Raja neutronitähtien ja mustien aukkojen välillä on kuitenkin häilyvä. Neutronitähtien maksimimassaksi arvellaan 2-3 Auringon massaa, mutta se riippuu käytetystä teoreettisesta mallista aineen olomuodolle. Havainnoista tähän mennessä saatu raskain neutronitähti painaa noin 1.74 Auringon massaa. Nyt tutkijat ovat havainneet tätä raskaamman neutronitähden, joka painaa 1.97±0.04 Auringon massaa. Ero ei ensialkuun kuulosta kovin merkittävältä, mutta itseasiassa se rajaa pois useampia eksoottisempia neutronitähden aineen teorioita, jotka sisältävät esimerkiksi hyperoneja tai bosonikondensaatteja. Tutkijat pystyivät mittaamaan neutronitähden massan näinkin tarkasti käyttäen hyväkseen ns. Shapiron viivettä, joka on suhteellisuusteoreettinen ilmiö. PSR J1614-2230 on nk. pulsari, joka pyörii itsensä ympäri erittäin nopeasti. Voimakkaan magneettikentän ansiosta pulsarit lähettävät erittäin intensiivistä säteilyä niiden navoilta joka yhdistettynä nopeaan pyörimiseen tekee niistä kosmisia majakoita. Katsomme PSR J1614-2230:ä juuri sopivasti, että sen säteilykartio pyyhkäisee Maan yli yhden pyörähdyksen aikana, kellontarkasti 317 kertaa sekunnissa. PSR J1614-2230 sijaitsee tutkijoiden onneksi kaksoistähtijärjestelmässä, jossa se kiertää yhdeksän päivän kiertoajalla valkoista kääpiötä. Satumme katsomaan kaksoistähtijärjestelmää lähes ratatason suuntaisesti, joten pulsarin säteily kulkee läheltä valkoista kääpiötä aina pulsarin kiertäessä valkoisen kääpiön taakse. Tällöin pulsarin säteily vääristyy valkoisen kääpiön painovoimakentässä ja aiheuttaa häiriöitä säteilypulsseihin (Shapiron viiveen), joiden perusteella molempien tähtien massat pystyttiin laskemaan hyvin tarkasti.

Tieteellinen artikkeli

Viikon video: Auringonpimennys

Kyse on tietenkin vain perspektiivistä, mutta on se silti melko hieno:

Viikon kuva: Kirppu

Yhdeksäs sija Nikon Small World -valokuvakilpailussa

Credit: Nikon Small World Competition

Tiedeviikko 41/10

Tämä tiedeviikko on omistettu galakseille:

Galaksien kasvatuksesta

Galaksit muodostuivat maailmankaikkeuteen ennen kuin se täytti miljardi vuotta, mutta ne olivat vielä silloin huomattavasti pienempiä verrattuna tämän päivän galakseihin. Eli jossain vaiheessa galaktista aikuistumista ja pullistumista on täytynyt tapahtua, mutta tutkijat eivät ole olleet varmoja kuinka galaksien evoluutio on aikojen saatossa oikein kehittynyt. Mahdollisia ravintolähteitä nuorelle galaksille on kaksi: sulautuminen suuremmaksi galaksiksi toisen galaksin kanssa tai galaksia ympäröivän kaasun kerääminen hiljalleen itseensä. Törmäämisen kautta kasvavat galaksit ovat olleet Hubblen kuukauden kuvina jo monta vuotta, mutta nyt tutkijat ovat löytäneet todisteita, että myös toinen ravintolähde on käytössä galakseilla. Käyttäen VLT -teleskooppia tutkijat havaitsivat galakseja, jotka olivat erittäin säännöllisen muotoisia, tasaisesti pyöriviä kiekkoja, joita muut galaksit eivät ole millään tavalla häirinneet. Galaksien punasiirtymäksi valittiin noin kolme, mikä vastaa aikaa noin kaksi miljardia vuotta alkuräjähdyksen jälkeen. Vanhetessaan galaksit keräävät raskasmetalleja (eli raskaampia atomeja kuin vety tai helium) niiden keskustoihin, mutta tutkijoiden havaitsemat galaksit sisälsivät keskustoissaan alueita, joiden metallisuus oli matala, koostuen enimmäkseen vetyä ja heliumia sisältävästä kaasusta, mutta joissa oli käynnissä vilkas tähtiensyntyprosessi. Näin ollen tutkijat päättelivät galaksien haalivan kaasua niiden ympäristöstään ja käyttävän sitä muodostaessaan uuden sukupolven tähtiä.

Tieteellinen artikkeli

Galaksijoukkojen raskaansarjan mestari

 

Credit: Infrapuna: NASA/JPL-Caltech/M. Brodwin (Harvard-Smithsonian CfA) Optinen: CTIO Blanco 4-m telescope/J. Mohr (LMU Munich)

Siitä huolimatta, että galaksit olivat huomattavasti pienempiä varhaisessa maailmankaikkeudessa, niin galaksijoukot olivat vastaavasti jättiläisiä tuona aikana. Nyt tutkijat ovat löytäneet galaksijoukon, joka sisältää satoja galakseja ja painaa noin 800 miljoonaa miljoonaa Auringon massaa. Galaksijoukon etäisyys meistä on noin seisemän miljardia valovuotta, joten näemme sen aikana jolloin maailmankaikkeuden ikä oli noin puolet nykyisestä eikä Aurinkokuntaa ollut vielä olemassa. Tämän lisäksi kaikki galaksijoukon galaksit näyttävät vanhoilta, joten galaksijoukon on täytynyt muodostua paljon aikaisemmin, tutkijoiden mukaan noin kaksi miljardia vuotta alkuräjähdyksen jälkeen. Jo tuon ikäisenä galaksijoukko oli yhtä suuri kuin Coman galaksijoukko, mutta se on kasvanut todennäköisesti neljä kertaa suuremmaksi tähän päivään mennessä. Havainnot tehtiin uutukaisella South Pole -teleskoopilla, joka havaits nk. Sunyaevin-Zel’dovichin ilmiötä, jossa galaksijoukossa sijaitsevat kuumat elektronit antavat lisäenergiaa mikroaaltotaustasäteilyn fotoneille luoden taustasäteilyyn pienen häiriön. Varhaisen maailmankaikkeuden galaksijoukkojen tutkiminen auttaa tutkijoita ymmärtämään, kuinka pimeä energia ja aine vaikuttivat kosmisten rakenteiden muodostumiseen. Kun maailmankaikkeus oli nuorempi, painovoimalla oli suurempi vaikutus ja galaksijoukkojen oli helpompaa kasvaa suuremmiksi, erityisesti niillä alueilla, jotka olivat ennestään jo tiheitä. Vastaavasti maailmankaikkeuden vanhetessa ja laajetessa pimeällä energialla on yhä suurempi ainetta hajaannuttava vaikutus ja nykyään se dominoi maailmankaikkeuden rakennetta estäen uusien galaksijoukkojen muodostumisen.

Tieteellinen artikkeli

Viikon kuva: Neliögalaksi

Uuden tutkimuksen mukaan osa Linnunradan kierrehaaroista on paikoin suoria, kuten yllä olevassa Tuulimyllygalaksissa. Tutkimuksen mukaan Aurinkokunta sijaitsisi yhdellä kaikkein suorimista haaroista. It’s hip to be square!