uniVersI/O


Category Archive

The following is a list of all entries from the Pimeä aine category.

Tiedekatsaus 1/12

Hyvää uutta vuotta! Viime vuoden loppu puolella tiedeviikko ei pysynyt enää viikkoaikataulussa, joten uuden vuoden kunniaksi tiedeviikko muutetaan tiedekatsaukseksi. Uusi vuosi alkaa tähtitieteen parissa ja ensimmäinen katsaus käsittelee tammikuussa järjestetyn Amerikan tähtitieteellisen seuran talvikokouksen antia. Luvassa on uusia tutkimuksia tämän vuoden varmaksi hittituotteeksi muodostuvista eksoplaneetoista ja pimeästä aineesta gammasäteitä unohtamatta. Ja eikun menoksi…

Pimeän aineen verkko

Credit: Van Waerbeke, Heymans & CFHTLens collaboration
Credit: Van Waerbeke, Heymans & CFHTLens collaboration

Emme voi nähdä sitä, emme voi tuntea sitä, emmekä voi reagoida sen kanssa, mutta pimeä aine on yksi maailmankaikkeutemme peruspilareista. Ensimmäiset vihjeet meille näkymättömän aineen olemassaolosta saatiin 1970-luvulla spiraaligalaksihavainnoista, joiden pyörimisprofiilin selittämiseksi pimeää ainetta ensimmäisenä ehdotettiin. Sittemmin tutkijat ovat osoittaneet, että pimeä aine hallitsee maailmankaikkeuden aineen määrää viisinkertaisella osuudellaan verrattuna näkyvään, atomeista koostuvaan aineeseen. Simulaatiot ovat osoittaneet, että maailmankaikkeus on järjestäytynyt verkkomaiseksi rakenteeksi, jossa pimeän aineen solmukohtiin on kerääntynyt näkyvän aineen keskittymiä, galaksijoukkoja, mutta toistaiseksi tutkijat eivät ole pystyneet osoittamaan tätä havaintojen pohjalta. Nyt kansainvälinen tutkimusryhmä käyttäen Canada-France-Hawaii -teleskooppia on onnistunut havaitsemaan pimeän aineen laajan mittakaavan verkkomaisen rakenteen. Mutta miten se on mahdollista, kun pimeää ainetta on mahdoton nähdä? Ratkaisu on käyttää itse pimeää ainetta havaintovälineenä. Tutkijat selvittivät miten etualalla sijaitsevat galaksijoukot kaareuttavat avaruutta, ja samalla vääristävät joukon takana olevien galaksien valoa, toimien ns. gravitaatiolinssinä. Tutkijat havaitsivat taustalla sijaitsevien galaksien näennäistä kaareutumista ja laskivat kuinka massiivinen etualan galaksijoukon täytyy olla, jotta havaittu kaareutuvuus pystyttiin toistamaan tietokonemallia apuna käyttäen. Näin pystytään arvioimaan galaksijoukon todellinen massa pimeä aine mukaanlukien. Vastaavasti pimeän aineen määrä saadaan vähentämällä kokonaismassasta näkyvän aineen eli tähtien ja galaksien massa, joka taas voidaan arvioida galaksijoukon kirkkauden perusteella. Tulokset pohjautuvat viiden vuoden aikana tehtyihin havaintoihin kymmenestä miljoonasta galaksista, joiden avulla yo. pimeän aineen kartta pystyttiin muodostamaan. Kartta vahvistaa edelleen käsitystä siitä, että maailmankaikkeuden rakenne koostuu tiheistä solmukohdista, massiivisista galaksijoukoista, joita yhdistää ohuet säikeet, jotka ympäröivät tyhjiä alueita.

Lehdistötiedote

Planeetat ovat ennemmin sääntö kuin poikkeus

Credit: ESO/Z. Bardon/ProjectSoft

Gravitaatiolinssien avulla voidaan tutkia myös muutakin kuin pimeää ainetta, nimittäin planeettoja. Samaan tapaan kuin galaksijoukot vääristävät joukon takana olevien galaksien valoa, niin yksittäinen tähti (ja sitä kiertävät planeetat) Linnunradassa voi vääristää sen takana sijaitsevan tähden valoa. Kaksi tähteä täytyy sijaita täsmälleen samassa linjassa Maasta katsottuna, jotta etualan tähden ja planeetan aihettama kirkkauden muutos on havaittavissa. Todennäköisyys sille, että kaksi tähteä sattuu sijaitsemaan näin on siis erittäin pieni. Onneksi Linnunradassa ei ole pulaa tähdistä, joten ratkaisu on havaita hyvin montaa eri tähteä ja toivoa parasta. Niinpä tähtitieteilijät ovat havainneet useampaa miljoonaa tähteä joka yö kuuden vuoden ajan. Kaiken kaikkiaan planeetan aiheuttamia gravitaatiolinssi-ilmiöitä havaittiin kokonaiset kolme kappaletta. Määrä ei ehkä kuulosta paljolta, mutta itseasiassa se on yllättävänkin paljon ottaen huomioon kuinka harvinainen kyseinen ilmiö on. Gravitaatiolinssimenetelmä on kohtuullisen herkkä metodi planeetan massan ja sen kiertoradan määrityksessä. Sitä voidaan käyttää havaitsemaan eksoplaneettoja joiden massa vaihtelee viidestä Maan massasta aina kymmeneen Jupiterin massaan saakka, ja jotka sijaitsevat 0.5-10 AU:n (1 AU = Maan keskimääräinen etäisyys Auringosta) etäisyydellä emotähdestään. Aiempien tutkimusten mukaan eksoplaneettojen massat tähtien ympärillä jakautuvat potenssilain mukaisesti vähentyen mitä raskaammiksi planeetat tulevat. Toisin sanoen keveiden, Maan massaisten, planeettojen määrä galaksissamme on suurempi kuin raskaiden Jupiterin kaltaisten planeettojen. Käyttäen hyväksi tätä tietoa, tutkijat pystyivät arvioimaan eri massaisten planeettojen määrää Linnunradassa pohjautuen uusiin gravitaatiolinssihavaintoihin eksoplaneetoista. Meillä ei tietenkään ole mitään syytä epäillä, että kyseiset havainnot olisivat jotenkin erityislaatuisia, vaan kyseessä on satunnainen otos Linnunradan tähdistä, joten havaintojen pohjalta tehty planeettojen määrän yleistys on sangen pätevä. Mikä tuo tulos sitten tarkkaan ottaen on? Tutkijat arvioivat, että keskimäärin jokaisen tähden ympärillä on 1.6 (+0.72/-0.89) planeettaa. Tämä ei siis merkitse sitä, että jokaisen tähden ympärillä olisi planeetta. Onhan Aurinkokunnassakin jo kahdeksan planeettaa. Mutta alkaa näyttää siltä, että sadan miljardin tähden lisäksi Linnunradasta löytyy myös sata miljardia planeettaa. Täytyy myös muistaa, että havainnot jättävät ulkopuolelle vielä planeetat, jotka ovat kevyempiä kuin viisi Maan massaa (Aurinkokunnassa tämä vastaa 50% planeetoista) ja jotka ovat lähempänä tai kauempana emotähdestä kuin 0.5-10 AU:ta (Aurinkokunnassa tämä koskee Merkuriusta, joka sijaitsee 0.4 AU:n etäisyydellä Auringosta, sekä Uranusta ja Neptunusta, jotka sijaitsevat 19.6 AU:n ja 30 AU:n etäisyydellä Auringosta). Eli mikäli joku toinen sivilisaatio Linnunradassa havaitsisi samalla tavalla Aurinkoa, se toteasi Aurinkoa kiertävän kaksi planeettaa: Jupiterin ja Saturnuksen. Näin ollen tuo 1.6 planeettaa per tähti on todennäköisesti vähemmän kuin todellinen planeettojen määrä Linnunradassa. Tämän tuloksen lisäksi tutkijat arvioivat, että jokaisella tähdellä on 17% todennäköisyys Jupiterin massaiseen planeettaan ja 52% todennäköisyys Neptunuksen massaiseen planeettaan. Olettaen, että planeettojen massan potenssilakijakauma pätee myös viittä Maan massaa kevyempiin planeettoihin, voidaan tuloksesta ekstrapoloida 67% todennäköisyys Maan massaiseen planeettaan kiertämässä kutakin Linnunradan tähteä.

ESO:n lehdistötiedote

Tieteellinen artikkeli

Saturnuksen kaksoisolento?

Credit: Michael Osadciw/University of Rochester

Havaitsemalla eksoplaneetan siluettia sen kulkiessa emotähdensä editse noin 420 valovuoden päässä Maasta tutkijat ovat löytäneet mahdollisesti Saturnuksen kaksoisolennon. Sco-Cen tähden (oikea nimi 1SWASP J140747.93-394542.6 tai ASAS J140748-3945.7) ympäriltä on löydetty eksoplaneetta, jolla todennäköisesti on ympärillään valtava rengasjärjestelmä. Yksi käytetyimmistä tavoista havaita eksoplaneettoja on nk. transit-metodi (kts. kuva alla), jossa eksoplaneetta kulkee emotähtensä editse ja näin ollen himmentää hieman tähden valoa. Pallomainen planeetta himmentää tähden valoa säännöllisesti, mutta Sco-Cen tähden valo havaittiin himmenevän erittäin epäsäännöllisesti. Jos Sco-Cen tähteä kiertävä kappale ei voi olla pallomainen planeetta, niin mikä se sitten on? Kappaleen havaittiin himmentävän maksimissaan jopa 95% tähden valosta, kun normaalisti eksoplaneetan havaitaan himmentävän emotähtensä valoa vain pari prosenttia. Ensiksi tutkijat yrittivät selittää tähden epätavallisen himmenisen johtuvan toisen tähden tai Sco-Cen tähden ympärillä olevan kaasu- ja pölykiekon avulla, mutta tulokset eivät vastanneet havaintoja. Parhaiten tähden himmenemisen selitti malli, jossa eksoplaneetta tai kevyt tähti, jolla on valtava kaasu- ja pölykiekko tai toisin sanoen rengasjärjestelmä, ohitti emotähden. Tässä tapauksessa kaasu- ja pölykiekon läpimitaksi saatiin huikeat 0.2-0.8 AU:ta. Verrattuna Saturnuksen renkaitten läpimittaan tämä kiekko on 200-800 kertaa suurempi. Tutkijat pystyivät myös päättelemään himmenemismallista, että renkaita on kolme kappaletta, joita erottaa samantyyppiset aukot kuin Saturnuksen renkaissa. Saturnuksen aukot ovat syntyneet sen kuiden vetovoiman aiheuttamista ratahäiriöistä, joten mikäli tämä sama efekti toimii Sco-Cen tähden ympärillä kiertävällä eksoplaneetalla, voisi se olla ensimmäinen epäsuora havainto eksokuista! Tähän mennessä tähden himmeneminen on havaittu vain kerran, joten Sco-Cen tähden kumppanin kiertoaikaa emotähden ympäri ei vielä tunneta. Todennäköisin vaihtoehto selittämään outo havainto on kuitenkin kaksoistähtijärjestelmä, jossa kaksi tähteä ovat eri evolutiivisessa vaiheessa. Näistä keveämmällä ja nuoremmalla tähdellä on vielä pöly- ja kaasukiekko ympärillään ja se kiertää vanhempaa tähteä, joka on puhaltanut jo oman kiekkonsa tähtienväliseen avaruuteen. Vastaavanlainen tähtijärjestelmä, jossa toista tähteä kiertää kaasu- ja pölykiekon omaava kappale on esimerkiksi ε Aurigae.

Ylhäällä: transit-metodin havainnekuva. Alhaalla vasemmalla: Sco-Cen:stä havaittu valokäyrä (mustat pisteet) ja siihen sovitettu eksoplaneetta ja rengasjärjestelmämalli (katkoviiva). Alhaalla oikealla: Nk. normaali eksoplaneetan aiheuttama emotähden himmenemisprofiili (Kepler 6b)

Lehdistötiedote

Tieteellinen artikkeli

Kolme vuotta maailmankaikkeutta Fermin silmin

 Jos näkisit näkyvän valon sijaan yli 1 GeV:n (miljardi elektronivolttia, eli noin miljardi kertaa näkyvän valon aallonpituutta pienempää) säteilyä ja katsoisit taivaalle, näkisit kutakuinkin seuraavanlaisen maiseman:

Credit: NASA/DOE/Fermi LAT Collaboration

Yo. kuva näyttää gammasädesatelliitti Fermin havaitsevan koko taivaan kartan. Kirkkaampi väri vastaa kirkkaampia gammasädekohteita. Kuvasta näkyy kuinka diffuusi gammasädehehku täyttää taivaan ja on kaikista kirkkain Linnunradan tasossa (keskellä kuvaa). Tämä hehku syntyy kun kosmiset säteet törmäävät tähtienvälisen aineen kanssa ja kattaa noin 75% Linnunradan gammasäteilystä. Pistemäisistä kohteista (noin 500 kappaletta, kts. kuva alla) noin 10% on Linnunradassa sijaitsevia pulsareita ja supernovajäänteitä, yli puolet on  kaukaisia kvasaareja ja loput ovat toistaiseksi tuntemattomia kohteita.

Maailmankaikkeus tietokoneessa (ja tietokone maailmankaikkeudessa)

Mainokset

Neutriinon tarina

Credit: Berkeley Lab

On aika rikkoa bittihiljaisuus ja tarttua jälleen kynän varteen. Syksyn varmasti yksi puhutuimmista tiedeuutisista oli havainto valoa nopeammista neutriinoista, jossa tutkijat lähettivät myonin neutriinosuihkun CERN:stä Genevestä läpi Alppien (piittaamatta vuorista lainkaan, koska neutriinot eivät juurikaan reagoi aineen kanssa) Italiaan 732 kilometrin pääähän, jossa muutamia neutriinoja havaittiin OPERA-ilmaisimella. Neutriinojen koko matka kellotetaan hyvin tarkasti GPS-synkronoituja kelloja käyttäen, ja jaettuna neutriinojen kulkema matka sen kulkemiseen käytetyllä ajalla, tutkijat saivat tulokseksi nopeuden, joka on himpun verran (2-3*10-5) suurempi kuin valonnopeus (299 792 458 m/s), eli neutriinot kulkivat noin 6000-9000 m/s ylivalonnopeutta. Mikäli havainto voidaan toistaa toisistaan riippumattomalla kokeella ja näin ollen tuoda lisää varmuutta valonnopeuden rikkomiseen, tulos on erittäin mielenkiintoinen ja varmasti vuosisadan havainto. Toisaalta, jo nyt on kerääntynyt hyviä syitä miksi havainto ei ehkä vastaakaan todellisuutta. Mutta ennen paneutumista tähän tutkimukseen on hyvä kerrata, miten nämä lähestulkoon olemattomat hiukkaset löysivät tiensä fyysikoiden hiukkasarsenaaliin.

Neutriinojen esiinmarssi radioaktiivisuuden pelastajina

Neutriinot ilmestyivät ensimmäistä kertaa hiukkasfysiikkaan vuonna 1930 epätoivoisena yrityksenä pelastaa tietyntyyppisten radioaktiivisten hiukkasten hajoaminen. 1800-luvun loppupuolella lähtien tiedettiin, että jotkut atomit ovat radioaktiivisia, jotka satunnaisesti säteilevät energeettisiä hiukkasia. Radioaktiivisuuden tutkijat, kuten Henri Becquerel ja Marie Curie sekä hänen miehensä Pierre osoittivat, että radioaktiivista säteilyä on kolmentyyppistä: alfa-, beta– ja gammasäteilyä (nimetty kolmen ensimmäisen kreikkalaisen aakkosen mukaan). Curieiden tutkimusten mukaan samaan aikaan kun radioaktiiviset atomit säteilevät betasäteilyä ne muuttuvat kevyemmiksi atomeiksi, joilla on positiivinen varaus. Tasapainottaakseen ytimien positiivisen varauksen betasäteily, joka koostuu elektroneista, kuljettaa mukanaan saman verran negatiivista varausta. Esimerkiksi tietyn tyyppisistä kaliumatomeista tulee kalsiumatomeja niiden säteillessä betasäteilyä. Curiet ajattelivat, että joka kerta kun betahajoaminen tapahtuu, siinä syntyvällä elektronilla on saman suuruinen energia, koska Einsteinin mukaan massa on energiaa (E=mc²) elektronin energia vastaisi täten kaliumytimen menettämää massaa sen muuttuessa kalsiumytimeksi. Koska kalium- ja kalsiumytimien massat tunnettiin tarkkaan jo Curieiden aikaan, elektronien energia pystyttiin ennustamaan tarkasti. Hyvästä teoriasta huolimatta betasäteilyn elektronien energia ei vastannut teorian mukaista massan menetystä vaan elektroneiden energia vaihteli arvosta toiseen. Mutta asiat olivat vieläkin huonommin, nimittäin näytti siltä, että massan ja energian kokonaismäärä ei säilynyt betahajoamisessa. Pelastavana toimenpiteenä itävaltalainen fyysikko Wolfgang Pauli ehdotti, vaikkei sitä edes itse tosissaan uskonut, että betahajoamisessa syntyi elektronin lisäksi myös toinen hiukkanen, joka kuljettaisi mukanaan osan energiasta. Tämän lisäksi energia pystyi jakautumaan näiden kahden hiukkasen välillä eri tavalla, jolloin elektronilla voi olla suurempi tai pienempi energia hajoamisprosessissa. Pauli antoi toistaiseksi hypoteettiselle hiukkaselle nimeksi neutroni, mutta myöhemmin se muutettiin neutriinoksi (”pikku neutroni” italiaksi), koska muutama vuosi myöhemmin brittifyysikko James Chadwick löysi hiukkasen atomin ytimestä, jonka tänä päivänä tunnemme nimellä neutroni. Paulin uuden hiukkasen ja Chadwickin neutronin pohjalta italialainen fyysikko Enrico Fermi kehitti betahajoamisen teorian, joka selitti kaikki tehdyt havainnot. Hän osoitti, että kun raskaampi radioaktiivinen ydin muuttuu kevyemmäksi betahajoamisessa, niin itseasiassa ytimen yksi neutroneista hajoaa protoniksi, elektroniksi ja Paulin uudeksi hiukkaseksi, neutriinoksi. Kaikki hiukkasten väliset reaktiot pohjautuvat johonkin voimaan. Mutta mikä voima oli vastuussa neutronin hajoamisesta? Fermin julkaistessa teoriansa betahajoamisesta ainoa voima, jonka tiedettiin operoivan hiukkastasolla oli sähkömagneettinen voima. Fermi kuitenkin laski, että mikäli neutronin hajoamisen aiheuttaa sähkömagneettinen voima sen olisi pitänyt tapahtua miljardi kertaa useammin kuin havainnot antoivat olettaa. Niinpä Fermi ehdottikin uutta heikkoa atomitason voimaa (joka myöhemmin on vahvistettu heikoksi vuorovaikutukseksi), joka olisi vastuussa neutronin hajoamisesta. Neutriinojen havaitsemiseen meni kuitenkin vielä yli kaksikymmentä vuotta Fermin teorian julkaisemisesta.

Olemattomat hiukkaset putkahtavat esiin ydinvoimaloista

Vuonna 1959 neutriinoja havaittiin ensimmäisen kerran kokeella, nimeltään Poltergeist, joka mittasi ydinreaktorista tulevia neutriinoja. Ydinvoimaloissa energiaa tuotetaan fissiolla, joka sivutuotteena tuottaa valtavasti neutriinoja. Projekti Poltergeist havaitsi ydinreaktorista yhden neutriinon muutamassa tunnissa, siitä huolimatta, että neutriinoja lensi ilmaisimen jokaisen neliösenttimetrin läpi miljardeja sekunnissa. Joka tapauksessa neutriinoja kuitenkin havaittiin jolloin Paulin sekä Fermin teoriat saivat viimein varmistuksen, ja hiukkasfysiikkaan muodostui uusi osa-alue: neutriinofysiikka. Neutriinojen löydyttyä fyysikot havaitsivat, että itseasiassa yhden neutriinon sijaan neutriinoja onkin kolmea eri tyyppiä. Lisäksi niiden havaittiin olevan massattomia tai hyvin keveitä ja liikkuvan lähes valonnopeudella. Nämä hiukkasmaailman kummitukset täyttävät maailmankaikkeuden jokaisen kolkan valtavina määrinä. Miljardeja neutriinoja kulkee lävitsesi joka sekunti huomaamattasi. Käytännössä katsoen neutriinot ovat kuin toisesta maailmasta, ne ovat lähes tulkoon kytkeytyneet kokonaan irti siitä maailmankaikkeudesta jonka tunnemme.

Pimeän aineen heikkopeikko

Nyky-kosmologian mukaan maailmankaikkeuden massa-energiatiheys koostuu enimmäkseen meille näkymättömästä tavarasta. Pimeä energia kattaa siitä noin 72%, pimeä aine noin 23% ja loput vajaa viisi prosenttia jää ”normaalille” aineelle, kuten galakseille, tähdille, planeetoille, apinoille ja kahvikupeille. Neutriinojen häilyvä olemus sopii kuin nenä päähän pimeän aineen kandidaatiksi. Kun maailmankaikkeus oli nuori ja erittäin kuuma, neutriinoja syntyi valtava määrä, joiden arvellaan säilyneen nykypäivään saakka. Keskimäärin maailmankaikkeudessa arvioidaan olevan kymmeniä miljoonia neutriinoja kuutiometrissä. Mikäli neutriinoilla on pikkiriikkisenkin verran massaa, noin sadastuhannesosa elektronin massasta, riittäisi se kattamaan koko pimeän aineen osuuden maailmankaikkeudessa. Mutta kuinka neutriino punnitaan? Neutriinojen massan arvoitus ratkesi yllättäen havaitsemalla meitä lähintä tähteä, eli Aurinkoa. Auringon keskustassa tapahtuvat fuusioreaktiot tuottavat sivutuotteena neutriinoja. Ensimmäistä kertaa Auringon neutriinot havaittiin Etelä-Dakotassa vanhassa kultakaivoksessa sijaitsevalla Homestake-kokeella vuonna 1968, jossa puolentoista kilometrin syvyydellä sijaitsevaan kaivokseen sijoitettiin 380 kuutiometrin tankki täynnä tetrakloorietyleeniä, joka on tavallisessa kemiallisessa pesussa käytettävä liuotin. Tankki haluttiin sijoittaa mahdollisimman syvälle, jotta muut häiriötekijät eivät pääsisi tuottamaan ilmaisimeen kohinaa. Neutriinon tönäistessä klooriatomia, se muuttuu radioaktiiviseksi argonin isotoopiksi, joka voidaan heliumia apuna käyttäen kerätä tankista talteen ja laskea sen määrä, joka vastaa kaapattujen neutriinojen määrää. Homestake-kokeen Auringosta havaitsemien neutriinojen määrä ei kuitenkaan vastannut teoreetikkojen ennustamaa määrää, vaan oli kolme kertaa tätä pienempi. Joko Auringon neutriinotuotannon laskut olivat täysin pielessä tai neutriinoille tapahtui jotain matkalla Auringosta Maahan. Vasta vuonna 1998 tutkijat saivat todisteita siitä, että kaikki Auringosta tulevat neutriinot eivät saavu Maahan asti tai ne muuttuvat matkalla jollakin tapaa. Tulokset saatiin Super-Kamiokande kokeesta, joka alunperin suunniteltiin havaitsemaan protonien hajoamista, mutta joka on osoittautunut erittäin hyväksi neutriino-observatorioksi. Super-Kamiokande on valtava tankki täynnä erittäin puhdasta vettä, joka sijaitsee kilometrin syvyydellä maanpinnan alapuolella. Tankissa olevaa vettä, jota on 50 000 tonnia, ympäröi 13 000 ilmaisinta, jotka pystyvät havaitsemaan äärimmäisen heikkoa valoa, parhaimmillaan jopa yksittäisen fotonin. Yksi tuhannesta miljardista neutriinosta joka kulkee tankin läpi osuu neutroniin tai protoniin, joka tuottaa minimaalisen valon välähdyksen. Laskemalla välähdysten määrä voitiin Auringosta tulevien neutriinojen määrä laskea. Tulokseksi saatiin noin puolet oletetusta Auringon neutriinojen määrästä. Tulos voi kuulostaa pettymykseltä, mutta Super-Kamiokande osoitti neutriinojen mielenkiintoisimman ominaisuuden – yhden tyyppiset neutriinot voivat muuttua matkallaan toisen tyyppisiksi neutriinoiksi. Super-Kamiokande mittaa kaikista herkimmin elektronin neutriinoita (toiset neutriinot ollen myonin neutriinoita ja taun neutriinoita), ja havainnot osoittivat, että puolet Auringossa syntyvistä elektronin neutriinoista muuttuu matkalla myonin tai taun neutriinoiksi. Näin ollen sekä Homestaken että Super-Kamiokanden havainnot pystyttiin selittämään neutriinojen muuttumisella toisikseen, eli neutriinojen oskillaatiolla. Viimeinen niitti neutriinojen mysteeriin tuli vuonna 2001, kun Solar Neutrino -observatorio Sudburyn kaivoksessa Kanadassa havaitsi Auringosta tulevia kaiken tyyppisiä neutriinoja ja havaitsi niiden vastaavan teorian mukaista neutriinojen määrää olettaen, että osa elektronin neutriinoista muuttuu matkalla toisiksi neutriinoiksi. Neutriinojen oskillaatio osoitti, että ainakin kahden tyyppisillä neutriinoilla on massaa. Kvanttimekaniikan mukaan kahden hiukkastyypin välillä oskilloivat hiukkaset muuttuvat toisikseen sitä nopeammin, mitä suurempi massaero niillä on. Jos kaikki neutriinot olisivat massattomia oskillaatiota ei tapahtuisi. Näin ollen ainakin kahden tyyppisellä neutriinolla on oltava nollasta eroava massa, jolloin niiden voidaan ajatella olevan heikosti vuorovaikuttavaa pimeää ainetta. Neutriinot kuuluvatkin pimeän aineen kandidaatteihin, joita kutsutaan yhteisnimikkeellä WIMP (Weakly Interacting Massive Particle). Myöhemmin on kuitenkin osoitettu, että neutriinot eivät riitä kattamaan kaikkea pimeän aineen määrää, vaan itseasiassa suurinosa pimeästä aineesta on jotain muuta, joka liikkuu huomattavasti hitaammin kuin neutriinot.

OPERAn kummitus

Hiukkasfysiikassa samoin kuin tähtitieteessä tutkitaan luontoa äärimmäisillään, jolloin koevälineet ovat tulevaisuuden teknologiaa siinä mielessä, että niistä poikivat spin-offit kaupalliseen käyttöön materialisoituvat vasta vuosikymmenten päästä (esim. internetin esimuoto kehitettiin CERN:ssä, ja digikameroiden yleistyminen johtui tähtitieteilijöiden tarpeesta saada käyttöönsä mahdollisimman hyviä CCD-kennoja), sekä havaittavat ilmiöt ovat yleensä äärimmäisen heikkoja, jolloin havaittavat signaalit eivät välttämättä ylitä kohinan määrää datassa. Yleensä nyrkkisääntönä pidetään, että merkittävän signaalin täytyy ylittää vähintään kolmen, mielellään viiden sigman tilastollinen merkittävyys, jolloin on 0.26% (kolme sigmaa) tai 0.000057% (viisi sigmaa) mahdollisuus, että havaittu signaali on osa kohinaa. Esimerkiksi tällä hetkellä Higgsin bosoni on havaittu noin 2 sigman tarkkuudella, mikä ei ole vielä riittävä tulos sen toteamiseksi. Nyt tutkijat kuitenkin mittasivat neutriinojen nopeuden kuuden sigman tarkkuudella, eli on erittäin epätodennäköistä, että mittaustulos olisi kohinaa.

Oletetaan, että neutriinot todellakin kulkevat nopeammin kuin valo tyhjiössä, mutta mitä se oikein tarkoittaa? Suhteellisuusteoriassa valonnopeus tyhjiössä on raja, jota nopeammin hiukkanen ei voi kulkea. Hypätäänpä hetkeksi hypoteettisen, lähes valonnopeutta kulkevan avaruusaluksen kyytiin matkalle Maasta Aurinkoon. Matkan aikana ehdimme sopivasti keittää ja juoda kupposen teetä ennen perille pääsyä. Voimme siis ajatella, että Aurinko on teen keiton ja yhden kupillisen juomiseen kuluvan ajan päässä Maasta. Mutta jos lisäämme alukseemme pökköä pesään, huomaamme että emme enää ehdikkään juomaan teetä ennen kuin olemme jo perillä. Eli meidän näkökulmasta katsoen Aurinko onkin enää teen keittoon kuluvan ajan päässä Maasta. Mikäli pystyisimme pusertamaan aluksemme kulkemaan valonnopeudella huomaisimme, että olemme perillä samaan aikaan kun lähdimme liikkeelle. Itseasiassa riippumatta kuljettavasta matkasta, oli se sitten Maasta Aurinkoon tai Alfa Centauriin, huomaisimme olevamme perillä samaan aikaan kun lähdimme liikkeelle, vaikka fyysisesti kulkisimme valonnopeudella paikasta toiseen. Hinta valonnopeudella kulkemiseen on siis täydellinen ajan katoaminen. Todellisuudessa meidän ja aluksemme pitäisi olla myös massattomia, jotta yltäisimme valonnopeuteen. Mikäli ajatusleikki laajennetaan ylivalonnopeuteen huomaisimme olevamme perillä ennen kuin edes lähdimme liikkeelle. Tarpeeksi ajatusta venyttäen voimme kuvitella olevamme perillä ennen kuin olimme edes syntyneet. Ylivalonnopeudella kulkeminen mahdollistaa ajassa taaksepäin kulkemisen, jolloin kaikki isoisä-paradoksit tulevat kaupan päälle. Epäjohdonmukaisuuksista johtuen teoriat, jotka sallivat kulkemisen ajassa taaksepäin hylätään yleensä hyvin pian. Mutta voi olla mahdollista, että neutriinot kulkevat nopeammin kuin valo, vaikka ne eivät voisikaan matkustaa menneisyyteen. Yksi mahdollinen teoria on nk. Lorentzin symmetriarikko, jolloin maailmankaikkeuden täyttäisi taustakenttä, eräänlainen moderni eetteri, jonka suhteen hiukkaset voivat liikkua. Suhteellisuusteorian ytimessä on nimenomaan Lorentzin symmetria, jonka mukaan fysiikan lait ovat samat havaitsijoille, jotka liikkuvat eri nopeuksilla toistensa suhteen. Suhteellisuusteoriassa ei ole olemassa mitään absoluuttista taustaa, jonka suhteen liikkuminen tapahtuu, vaan kaikki on – niin, suhteellista – valonnopeuden ollessa kaikille havaitsijoille se suurin nopeus. On kuitenkin mahdollista, että alkuräjähdyksen jälkeen Lorentzin symmetria rikkoontui spontaanisti ja maailmankaikkeuden täytti taustakenttä, jonka kanssa neutriinot pystyvät reagoimaan mutta fotonit eivät. Neutriinot ovat kuin väreitä tässä taustakentässä samaan tapaan kuin aallot ovat väreitä veden pinnalla tai ääniaallot väreitä ilmassa. Tällöin neutriinoiden nopeus riippuu siitä mihin suuntaan ne kulkevat suhteessa taustakenttään. Jos neutriinot kulkevat valonnopeudella ja taustakenttä liikkuu jollakin nopeudella samaan suuntaan suhteessa muuhun maailmankaikkeuteen, näemme neutriinojen liikkuvan nopeammin kuin valo. Missään vaiheessa neutriinot eivät kuitenkaan matkusta menneisyyteen ja pääse tappamaan omia isovanhempiaan.

Toinen mahdollinen teoria ylivalonnopeudesta sisältää oikoreitin ylimääräisten ulottuvuuksien kautta. Mikäli maailmankaikkeudessa on olemassa lisää avaruudellisia ulottuvuuksia kolmen tuntemamme lisäksi, joita pitkin neutriinot pystyvät kulkemaan, voi niiden matkaan käyttämä aika vähentyä huomattavasti, vaikka ne eivät kulkisikaan ylivalonnopeutta. Havainnollistava esimerkki ylimääräisen ulottuvuuden tuomaan vaikutukseen voi olla vaikkapa muurahainen, joka elelee Z-muotoisen yksiulotteisen viivan pinnalla (kts. kuva alla). Olkoon muurahaisen nopeus maksiminopeus Z-maailmankaikkeudessa. Eräänä päivänä muurahainen tekee kuitenkin havainnon toisesta muurahaisesta Z:n yläkärjessä, ryntää Z:aa pitkin maksiminopeudella Z:n alakulmaan vain huomatakseen toisen muurahaisen jo olevan siellä. Niinpä Z-maailman muurahainen päättelee toisen muurahaisen kulkevan ylimuurahaisnopeudella, ja välttääksen sellaisen epäloogisuuden kehittää teorian tasomaailman muurahaisista, jotka voivat kulkea Z:n sisältävän tason pinnalla. Tällöin on helppo huomata, että ylimuurahaisnopeus ei ole tarpeellinen koska matka Z:n yläkärjestä alakulmaan on tasomaailmassa selvästi lyhyempi kuin Z-maailmassa.

Supernovat kosmisina liikennepoliiseina

Jos OPERA:n havainto osoittautuu todeksi, merkitsee se mullistavaa loikkausta eteenpäin fysiikan lakien ja maailmankaikkeuden rakenteen tutkimuksessa. Mutta kyseessä on kuitenkin vielä iso ”jos”. Vaikka mittaustulos ei olekaan kohinaa on mahdollista, että kokeessa on jokin systemaattinen virhe. Heti OPERA:n tulosten julkaisun jälkeen monen tutkijan epäily kohdistui neutriinopulssien pituuteen ja GPS-mittauksen tarkkuuteen. Aluksi CERN:stä lähetetyt neutriinopulssit olivat suhteellisen pitkiä, noin 10 mikrosekuntia, joka aiheutti suuren virheen neutriinojen matka-ajan mittaukseen. Neutriinojen käyttämä matka-aika oli noin 60 nanosekuntia nopeampi kuin valon, ja 10 mikrosekuntia on noin 150 kertaa suurempi kuin tuo 60 nanosekuntia, joten pienetkin epäselvyydet missä vaiheessa pulssia neutriinot sijaitsevat voivat helposti johtaa mitattuun eroon. Marraskuussa tehdyt uudet mittaukset käyttäen tuhat kertaa lyhyempiä pulsseja kuitenkin osoittivat, että virheen syy ei ollut neutriinopulsseissa, ja neutriinojen mitattiin edelleen kulkevan ylivalonnopeudella. GPS-mittauksen tarkkuus voi kuitenkin vielä olla mahdollinen virhetekijä. Neutriinojen matka-ajan mittaus on äärimmäisen tarkkaa puuhaa, joten pienikin ero CERN:in ja OPERA:n kellojen synkronoinnissa voi johtaa mitattuun valonnopeuden ylitykseen. Koska yleisen suhteellisuusteorian mukaan painovoima kaareuttaa aika-avaruutta, eri painovoimaolosuhteet (esim. korkeus maanpinnasta) vaikuttavat siihen kuinka nopeasti kellot mittaavat aikaa. Pienetkin huomiotta jääneet erot CERN:n ja OPERA:n painovoimakentissä voivat johtaa virheeseen matka-ajan mittauksessa. Sitten on toki mahdollista, että on olemassa virhetekijöitä joita kukaan ei ole vielä ajatellut. Tärkeintä olisikin, että neutriinojen nopeudesta saataisiin toisistaan riippumattomia mittauksia toisilla koelaitoksilla.

Credit: NASA/Hubble Heritage

Yksi riippumaton mittaustulos on kuitenkin jo saatu, nimittäin supernovasta SN1987A. Vuonna 1987 yllä esitelty Super-Kamiokande havaitsi neutriinosuihkun (kokonaiset 12 neutriinoa!) SN1987A:sta. Myös kaksi muuta neutriinoilmaisinta havaitsi saman neutriinosuihkun: IMB Ohiossa, Yhdysvalloissa havaitsi samaan aikaan 8 neutriinoa ja Baksan Venäjällä 5 neutriinoa. Tässä kohtaa on hyvä pysähtyä ja miettiä kuinka häilyväsiä neutriinot todellakin ovat. Supernovassa syntyi arviolta 1058 neutriinoa, jotka levisivät tasaisesti joka puolelle ympäröivään avaruuteen. Tätä voi ajatella kuvittelemalla alati laajenevan neutriinokuplan, josta pieni osa pyyhkäisee Maapallon yli kun kupla on säteeltään 168 000 valovuotta, joka on etäisyys Maasta SN1987A:han. Laimennuskerroin neutriinojen määrässä on tällöin 1/4πD² ≈ 1/1044 m², missä D on etäisyys supernovaan. Huolimatta valtavasta etäisyydestä meihin neutriinoja riittää vieläkin noin 1014 kappaletta neliömetrille, joista kolme neutriinoilmaisinta havaitsi yhteensä 25 kappaletta! Vain kolme tuntia neutriinojen jälkeen supernova havaittiin näkyvän valon aallonpituudella. Jos neutriinot ja fotonit lähtivät samasta paikasta samaan aikaan, olisivat neutriinot kulkeneet ylivalonnopeutta, joka toisi niille matkaetua kolme tuntia 168 000 valovuodessa. Tämä on kuitenkin huomattavasti pienempi valonnopeuden ylitys kuin OPERA:n neutriinoilla. Mikäli neutriinot supernova 1987A:sta olisivat kulkeneet samalla nopeudella kuin OPERA:n neutriinot, olisi niiden pitänyt olla perillä Maassa neljä vuotta aikaisemmin. Sen lisäksi neutriinojen ja näkyvän valon välillä oleva ero on helposti selitettävissä supernovien syntyteorialla, jossa räjähdys alkaa tähden keskustassa lähettäen valtavan määrän neutriinoja, jotka lentävät ympäröivään avaruuteen välittämättä ympärillä olevasta tähdestä. Räjähtävän tähden pinta ei kuitenkaan ole tietoinen sen keskustassa tapahtuneesta räjähdyksestä ennen kuin tieto siitä saapuu pinnalle shokkiaaltojen muodossa noin kolme tuntia räjähdyksen jälkeen, jotka lopullisesti posauttavat tähden ja tällöin räjähdyksessä syntyneet fotonit pääsevät esteettä etenemään ympäröivään avaruuteen. Ainakin tämän supernovahavainnon mukaan neutriinot kulkisivat lähes tarkalleen valonnopeudella, mikä sotisi OPERA:n mittauksia vastaan.

En jaksanut lukea, joten hyppäsin loppuun

Kulkevatko neutriinot nopeammin kuin valo? Se on epätodennäköistä, mutta ei täysin mahdotonta.

No mistä kaikki sitten oikein hössöttää? Koska hiukkasfyysikot ovat tehneet erittäin tarkan mittauksen ja tarkistaneet kaikki mahdolliset virheet moneen kertaan ja edelleen neutriinot näyttävät kulkevan nopeammin kuin valo. Niinpä hämmentyneet tutkijat julkaisivat tuloksensa odottaen, että joku keksisi uuden virhetekijän, joka selittäisi tuloksen tai tekisi uuden mittauksen, joka vahvistaisi tai kumoaisi havaitun ylivalonnopeudella liikkumisen.

Miksi neutriinojen ylivalonnopeudella liikkuminen on sitten epätodennäköistä? Tutkijat ovat kerran havainneet sekä fotoniryöpyn että neutriinosuihkun räjähtävästä supernovasta, jotka saapuivat samaan aikaan havaintolaitteisiin osoittaen, että neutriinot kulkevat lähes tarkalleen valonnopeudella.

Mitä nämä neutriinot oikeastaan ovat? Erittäin heikosti tavallisen aineen kanssa vuorovaikuttavia hiukkasia, joiden arvellaan kattavan noin 10% maailmankaikkeuden pimeästä aineesta.

Miksi tämä ketään kiinnostaa? Jos neutriinot havaitaan kulkevan ylivalonnopeudella toisistaan riippumattomilla kokeilla, joka näin ollen todistaisi valonnopeuden rikkomisen, olisi se vähintäänkin maailmankaikkeuden ymmärrystämme mullistava havainto. Jos kokeet osoittaisivat, että maailmankaikkeudessa on avaruudellisia ulottuvuuksia enemmän kuin tähän mennessä tuntemamme kolme ulottuvuutta, olisi se mullistavampaa kuin havainto siitä, että Maa ei olekaan maailmankaikkeuden keskipiste vaan se kiertää Aurinkoa, joka kiertää Linnunradan keskustaa galaksissa, joka on vain yksi sadoista miljoonista galakseista maailmankaikkeudessa. Koko käsityksemme maailmankaikkeuden rakenteesta muuttuisi kertaheitolla.


Tiedeviikko 45/10

Linnunradan gammasädehalo

Credit: NASA-Goddard

 

Tähtitieteilijät ovat löytäneet Linnunradan keskustasta kaksi laajenevaa 25000 valovuoden läpimittaista kuplaa, jotka säteilevät röntgen- ja gammasäteilyä. Kuplien olemassaolosta on saatu viitteitä aikaisemmista koko taivaan röntgenkartoituksista ja kosmisen mikroaaltotaustasäteilyn kartoista, mutta vasta nyt NASA:n gammasädesatelliitti Fermi on vahvistanut niiden olemassaolon. Mikään aikaisempi Fermin havaitsema kohde ei vastaa juuri löydettyjä valtavia gammasädekuplia, joten tutkijat ajattelevatkin niiden olevan täysin uudentyyppinen kohde. Koska sijatsemme itse Linnunradassa, kuplat kattavat taivaasta yli puolet, Neitsyen tähdistöstä aina Kurjen tähdistöön saakka. Kuplien energia vastaa noin 100000 supernovan energiaa, ja tutkijat ovat ehdottaneet kahta vaihtoehtoa näin valtavan energisen ilmiön selitykseksi. Joko kyseessä on Linnunradan keskustassa tapahtunut räjähdysmäinen raskaiden tähtien syntyprosessi, jossa tähtien voimakkaat tähtituulet ovat lingonneet korkeaenergisiä hiukkasia avaruuteen, tai sitten kyseessä on Linnunradan keskustan supermassiivisen mustan aukon aktiivivaiheen jäänne. Ensiksimainitun ongelma on kuitenkin se, että kuplissa olevan energian syöttämiseen menisi tähtituulilta huomattavasti aikaa, joten toinen vaihtoehto vaikuttaa hieman todennäköisemmältä. Tähtitieteilijät ovatkin havainneet useammista aktiivisista galakseista hyvin energeettisiä hiukkassuihkuja niiden supermassiivisten mustien aukkojen läheisyydestä, suihkujen ulottuessa aina satoihin tuhansiin valovuosiin asti. Tähän mennessä oma musta aukkomme on kuitenkin pysytellyt hiljaisena ja havaintoja hiukkassuihkuista ei ole. Tämä ei kuitenkaan tarkoita sitä, ettei niitä olisi aikaisemmin ollut olemassa. Linnunradan keskustan musta aukko on noin 400 miljoonaa kertaa massiivisempi kuin Aurinko, ja se ei ole voinut kasvaa niin suureksi vain istuskellessaan hiljaa paikallaan. Todennäköisesti sillä on ollut erittäin aktiivisia jaksoja, jolloin paljon materiaa on pudonnut aukkoon. Osa mustaan aukkoon kertyvästä materiasta linkoutuu kuitenkin voimakkaiden magneettikenttien avustuksella poispäin aukosta muodostaen hiukkassuihkut. Supermassiivisen mustan aukon hiukkassuihkut pystyisivät selittämään kuplien energiamäärän noin 10000-100000 vuoden aktiivijaksolla, joka on vain silmänräpäys galaksin elämässä.

Tieteellinen artikkeli

Tarkin pimeän aineen kartta

Credit: NASA, ESA, D. Coe (NASA Jet Propulsion Laboratory/California Institute of Technology, and Space Telescope Science Institute), N. Benitez (Institute of Astrophysics of Andalusia, Spain), T. Broadhurst (University of the Basque Country, Spain), and H. Ford (Johns Hopkins University)

 

Käyttäen Hubble -avaruusteleskoopin kuvia hyväkseen tutkijat ovat pystyneet kartoittamaan pimeän aineen jakauman 2.2 miljardin valovuoden etäisyydellä sijaitsevasta Abell 1689 galaksijoukosta. Säteilemättömän ja vuorovaikuttamattoman (paitsi painovoimansa kautta) aineen havaitseminen on äärimmäisen hankalaa, mutta tähtitietelijät ovat yrittäneet tehdä sitä jo yli kymmenen vuotta. Abell 1689 toimii gravitaatiolinssinä taustalla sijaitseville galakseille, joiden valo voimistuu ja vääristyy galaksijoukon painovoimakentän mukaisesti. Mittaamalla kaikkien taustagalaksien valon vääristymän, tutkijat pystyivät rakentamaan ensimmäistä kertaa painovoimakartan galaksijoukosta, joka pystyy selittämään kerralla kaikki gravitaatiolinssi-ilmiöt Hubblen kuvista. Vertaamalla mallista saatua aineen jakaumaa galaksijoukosta havaittavaan säteilevään aineeseen, saadaan tulokseksi kartta aineesta joka ei säteile, vaan vaikuttaa ainoastaan painovoimansa kautta, eli pimeästä aineesta. Pelkästään näkyvän aineen aiheuttama painovoima ei pystyisi vääristämään takana olevien galaksien valoa yhtä paljon kuin Hubblen kuvista näkyy. Tutkimus antaa vihjeitä myös vielä pimeää ainettakin oudommasta universumin komponentista, pimeästä energiasta, ja sen roolista maailmankaikkeuden historiassa. Nykyisten kosmologisten teorioiden mukaan pimeä energia on tyhjiön energiaa, joka venyttää avaruutta laajentaen sitä kiihtyvällä tahdilla. Jotta niinkin suuria rakenteita kuin galaksijoukkoja pystyisi muodostumaan, täytyy niiden pystyä vastustamaan painovoimallaan pimeän energian luotaantyöntävää voimaa. Tutkimus vahvistaa Abell 1689 galaksijoukosta tehdyt aikaisemmat pimeän aineen tulokset, joiden mukaan galaksijoukon keskustassa on huomattava määrä pimeää ainetta, enemmän kuin olisi odotettavissa Abell 1689:n kokoiselta galaksijoukolta. Niinpä tutkijat päättelivät, että galaksijoukkojen on täytynyt muodostua hyvin varhaisessa vaiheessa maailmankaikkeuden alkutaipaleella, jolloin universumi oli tiheämmin pakattu ja pimeää ainetta oli vielä runsaasti tarjolla.

Tieteellinen artikkeli

Higgs?

Yksi suurista LHC -hiukkaskiihdyttimen tavoitteista on havaita Higgsin hiukkanen – osa mekanismista, jonka fyysikot ajattelevat antavan aineelle massan. LHC:n CMS -ilmaisin ilmoitti, että se on tehnyt ensimmäisen havainnon Z-bosoniparista. Z-bosonit ovat heikon vuorovaikutuksen välittäjähiukkasia samaan tapaan kuin fotonit ovat sähkömagneettisen ja gluonit vahvan vuorovaikutuksen välittäjähiukkasia. Mikäli Higgsin hiukkanen on raskas, se todennäköisesti hajoaa kahdeksi Z-bosoniksi. Z-bosonit vuorostaan hajoavat korkeaenergisiksi myoneiksi (vähän kuin raskaampi versio elektronista), jotka matkaavat suoraan halki CMS:n voimakkaan magneettikentän (kts. kuva ylhäällä). Niinpä CMS mahdollisesti havaitsi Higgsin hiukkasen hajoamisen. Tai sitten ei. On olemassa myös muita reaktioita, jotka voivat tuottaa Z-bosoneja, esimerkiksi ne voivat syntyä suoraan protoni-protoni törmäyksessä. Mutta kuten monessa muussakin asiassa korkeaenergiafysiikassa, tilastot ovat kaikki kaikessa. Tarvitaan ehkä noin sata vastaavanlaista tapahtumaa, jotta voidaan sanoa mistä Z-bosonit oikein tulevat. LHC on juuri ryhtynyt törmäyttämään lyijyatomeita, joten protonitörmäyksiä joudutaan odottelemaan ensi vuoteen. Mutta kenties saimme nähdä ensimmäisen pilkahduksen Higgsin hiukkasesta jo tänä vuonna. Lisää tietoa törmäyksestä täällä (englanniksi).


Tiedeviikko 32+33/10

Työkiireiden vuoksi kaksi edellistä viikkoa on tällä kertaa niputettu yhteen.

Rubiikin kuution ratkaisu

Googlen lahjoittaman 35 CPU-vuoden (1.1 miljardia sekuntia Intel Nehalem, four-core, 2.8GHz prosessorilla tai vastaavalla) laskuajan avulla tutkijat ovat ratkaisseet rubiikin kuution kaikilla mahdollisilla alkutilanteilla ja todenneet, että ne ovat ratkaistavissa 20:llä tai vähemmällä määrällä siirtoja. Kaikkien mahdollisten alkutilanteiden määrä on 43252003274489856000, jotka tutkijat jakoivat 2217093120 ryhmään sopivalla tavalla, joissa jokaisessa on 19508428800 alkutilannetta. Symmetrian avulla (esim. yksi alkutilanne saadaan toisesta kääntämällä kuutio ylösalaisin) ryhmien määrä pystyttiin rajaamaan 55882296 kappaleeseen. Koska vaikeimman tunnetun alkutilanteen ratkaisemiseen vaaditaan 20 siirtoa, tutkijoiden tekemä algoritmi suunniteltiin ratkaisemaan kuutio 20:llä tai vähemmällä määrällä siirtoja, ei optimaalisimmalla määrällä. Algoritmi vaati yhden alkutilanteen ratkaisemiseksi noin 20 sekuntia. Rubiikin kuutio keksittiin reilu kolmekymmentä vuotta sitten, viisitoista vuotta sitten keksittiin ensimmäinen 20 siirtoa vaativa alkutilanne ja nyt viisitoista vuotta myöhemmin on todistettu, että mikä tahansa Rubiikin kuution alkutilanne on ratkaistavissa 20:llä tai vähemmällä määrällä siirtoja.

Cube20 -sivusto

Einstein@Home löysi epätavallisen pulsarin

Credit: NAIC/Arecibo Observatory/NSF

Einstein@Home on yksi BOINC-ohjelmistoa käyttävistä projekteista, joka käyttää kotitietokoneiden prosessoreiden ylijäämäaikaa näyttösäästäjän muodossa suorittaakseen hajautetusti vaativia laskuja. Enimmäkseen Einstein@Home -projekti on tarkoitettu gravitaatioaaltojen etsimiseen maailmankaikkeudesta, mutta siinä sivussa se on käyttänyt kotitietokoneita käymään läpi dataa radioteleskoopilta ja löytänyt erikoisen pulsarin. Pulsarit ovat nopeasti pyöriviä neutronitähtiä, jotka ovat muodostuneet tähden räjähtäessä supernovana. Niiden nopea pyöriminen aiheuttaa neutronitähden navoilta syntyvän säteilyn pyyhkiytymisen majakan lailla Maan yli luoden jaksottaisia välähdyksiä. Pulsareiden alkuvaiheessa niiden pyöriminen on hyvin nopeaa ja säteily energeettistä röntgensäteilyä, mutta ajan kuluessa pyörimisnopeus hidastuu ja säteily siirtyy loppujen lopuksi radiotaajuuksille. Vuodesta 2009 alkaen Einstein@Home alkoi etsiä radiotaajuuspulsareita käyttäen radiodataa Arecibo -teleskoopilta (tuttu James Bondista). Kotikäyttäjät saavat dataa noin viiden minuutin verran, josta tietokone etsii jaksollisia signaaleja pulsareista. Heinäkuussa yksi käyttäjistä löysi jaksollisen signaalin, joka myöhemmin vahvistettiin lukuisilla teleskoopeilla olevan pulsari PSR J2007+2722. Tutkijat huomasivat kuitenkin pulsarista jotain epätavallista. PSR J2007+2722:lta puuttui pulsareita normaalisti ympäröivä kaasupilvi ja intensiivistä röntgensäteilyä ei röntgensatelliittihavainnoilla löydetty. Tutkijat arvelevatkin kyseessä olevan ns. häiriintynyt ja kierrätetty pulsari, jolla alunperin on ollut seuralaistähti, mutta jokin häiriö tässä kaksoistähtijärjestelmässä on aiheuttanut sen hajoamisen, antaen samalla pulsarille lisää pyörimisvauhtia.

Science-lehden artikkeli

Lisää valoa pimeään

Credits: NASA, ESA, Jullo (JPL), Natarajan (Yale), Kneib (LAM)

Viitisenkymmentä vuotta sitten tähtitieteilijät vielä tutkivat taivaan kohteita, jotka lähettivät tai heijastivat säteilyä, joka oli havaittavissa sopivalla teleskoopilla ja instrumentilla. Nykyään tähtitieteessä on kuitenkin siirrytty enemmässä määrin havaitsemaan kohteita, jotka eivät säteile (tosin havaitsemalla näkymättömien kohteiden vaikutuksia säteileviin kohteisiin). Viime aikoina erityistä huomiota ovat saaneet pimeä aine ja pimeä energia, jotka kaikkien yllätykseksi osoittautuivat kattamaan 96% maailmankaikkeuden massasta (tai energiasta muistaen, että E=mc²). Näistä kahdesta pimeän energian osuus on noin 72% ja se on vastuussa maailmankaikkeuden kiihtyvästä laajenemisesta. Laajeneminen on siis avainsana pimeän energian tutkimisessa ja ensimmäisenä maailmankaikkeuden kiihtyvä laajeneminen huomattiin vuonna 1998 tutkimalla kaukaisia tyypin Ia supernovia, jotka toimivat tähtitieteessä ns. standardikynttilöinä. Sen jälkeen vahvistuksia laajenemiselle on tipahdellut taisaiseen tahtiin, mm. tutkimalla mikroaaltotaustasäteilyä, galaksijoukkojen määrää maailmankaikkeudessa tai baryonisia akustisia värähtelyjä, jotka kaikki suosivat pimeän energian määräksi maailmankaikkeudessa noin 72%, tosin suhteellisen suurilla virherajoilla. Jos virherajat ovat suuret ja huomattavaa parannusta tuloksiin ei ole tiedossa lähitulevaisuudessa, on tärkeää tutkia samaa kohdetta toisistaan riippumattomilla menetelmillä, jolloin yhdistämällä eri menetelmien virheet saadaan tuloksesta yleensä huomattavasti tarkempi. Science-lehdessä juuri julkaistu tutkimus esitteleekin uuden menetelmän, jolla pimeää energiaa voidaan havaita, ja yhdistämällä uudet tulokset vanhojen kanssa pimeän energian parametrien tarkkuutta on huomattavasti parannettu. Tutkijat havaitsivat Hubble-avaruusteleskoopilla sekä maanpäällisillä Keck ja VLT -teleskoopeilla galaksijoukkoa Abell 1689, joka toimii gravitaatiolinssinä 34:lle kaukaisemmalle galaksille. Mallintamalla kuinka paljon ja millä tavalla kaukaisten galaksien säteily vääristyy matkalla maailmankaikkeudessa galakseista Maahan, tutkijat pystyivät arvioimaan maailmankaikkeuden rakennetta olettaen, että Abell 1689 galaksijoukon aiheuttaman painovoiman vaikutus fotonien ratoihin on tunnettu. Tämä tietysti edellyttää (tavallisen ja pimeän) aineen jakauman tarkkaa tuntemista galaksijoukossa, jonka virhe tutkimuksessa on merkittävä. Myöskään fotoneiden ratoihin vaikuttavaa muuta painovoimalähdettä matkalla galakseista Maahan ei voida sulkea pois, mikä aiheuttaa lisää virhettä tuloksiin. Kaikesta virheista huolimatta, yhdistämällä uudet tulokset vanhojen supernovista ja kosmisesta taustasäteilystä saatujen tulosten kanssa, virherajoja saatiin pudotettua 30%. Uusien yhdistetyjen tulosten mukaan maailmankaikkeuden materiatiheys on 0.23 ja 0.33 välillä ja pimeän aineen tilanyhtälön parametri w, eli paineen ja energiatiheyden suhde on -1.12 ja -0.82 välillä 99% luottamustasolla. w:n negatiivinen arvo tulee pimeän energian negatiivisestä paineesta, joka on vastuussa maailmankaikkeuden laajenemisesta. Nk. ΛCDM (Lambda Cold Dark Matter) -maailmankaikkeuden mallissa w:n arvo -1 pimeälle energialle vastaa yleisen suhteellisuusteorian kosmologista vakiota. Tutkijoille on kuitenkin vielä epäselvää, mitä pimeä energia oikeastaan on.

Kosminen tulivuori

Credits: X-ray (NASA/CXC/KIPAC/N. Werner, E. Million et al); Radio (NRAO/AUI/NSF/F. Owen)

Fysiikan yksi kauneus piilee siinä, että sama ilmiö voidaan rinnastaa hyvin eri kokoluokan kohteille. Nyt tutkijat ovat löytäneet samankaltaisuuksia tulivuori Eyjafjallajökullin purkauksesta ja supermassiivisen mustan aukon purkauksesta M87 galaksin keskustassa. M87 sijaitsee noin 55 miljoonan valovuoden päässä keskellä suhteellisen läheistä Neitsyen galaksijoukkoa ja sen keskustan musta aukko painaa hulppeat 4 miljardia auringonmassaa (vrt. Linnunradan keskustan musta aukko painaa 4 miljoonaa auringonmassaa). Yhdistämällä Chandra -röntgensatelliitin (sininen väri yo. kuvassa) ja VLA -radioteleskoopin (puna-oranssi) kuvat M87:stä, tutkijat arvelevat supermassiivisen mustan aukon linkoamien hiukkassuihkujen toimivan kosmisena ehkäisymenetelmänä galaksin tähtiensynnylle. Galaksijoukossa galaksien välissä esiintyy erittäin kuumaa kaasua, joka säteilemällä röntgensäteilyä jäähtyy ja putoaa kohti galaksien keskustoja, joissa se jäähtyy vielä enemmän ja muodostaa uusia tähtiä. M87:n tapauksessa supermassiivisen mustan aukon hiukkassuihkut kuitenkin häiritsevät tätä prosessia. Ne kuljettavat mukanaan keskustan kylmää kaasua ja muodostavat shokkiaaltoja galaksissa liikkuessaan yliäänennopeudella (kts. kuva alla).

Credits: X-ray (NASA/CXC/KIPAC/N. Werner, E. Million et al); Radio (NRAO/AUI/NSF/F. Owen)

Samantapainen ilmiö havaittiin Eyjafjallajökullin purkauksissa, jossa kuuman kaasun taskuja purkautui laavakerroksen läpi aiheuttaen shokkiaaltoja, jotka voitiin havaita kulkevan tulivuoresta nousevan savun läpi. Kuuma kaasu kohoaa sitten nopeasti ilmakehään vetäen mukaansa tummanharmaata tuhkaa (kts. video).

Chandra X-ray Center:in lehdistötiedote