uniVersI/O


Category Archive

The following is a list of all entries from the Ruskeat kääpiöt category.

Poimintoja, osa I

Suomen kesä on lyhyt ja ytimekäs, mutta paljon mielenkiintoista ehti kuitenkin tapahtua tieteen saralla. Tässä muutamia poimintoja mielenkiintoisimmista tiedeuutisista. Jatkoa seuraa…

Antimateriavyöhyke Maan ympärillä

Credit: NASA

Antimateriaa on erittäin hankalaa valmistaa laboratoriossa, sillä päästessään kosketuksiin materian kanssa se tuhoutuu ja muuttuu välittömästi säteilyksi. Ainoa keino sen säilytykseen on pitää antimateriaa kasassa magneettikentän avulla irti sen säilytysastian seinistä. Maailmanennätys antimaterian, tarkemmin antivedyn, säilömisessä onkin vain 15 minuuttia. Tämän lisäksi antimateriaa täytyy synnyttää törmäyttämällä lähes valonnopeudella kulkevia protoneja kohtioon, jolloin törmäystuotteeksi syntyy fantastinen määrä eri hiukkasia, muunmuassa antiprotoneja. Antimateriatutkijan elämä ei siis ole helppoa, koska elämme keskellä erittäin materiapainotteista maailmaa. Maan pinnalta poistuessa materiatiheys putoaa kuitenkin huomattavasti, minkä lisäksi antimateriaa eristäviä magneettikenttiä risteilee avaruudessa siellä sun täällä. Käyttäen PAMELA -instrumenttia tutkijat ovat löytäneet antiprotoneita avaruudesta, joita Maan magneettikenttä pitää otteessaan. Antiprotonit löytyivät tarkemmin ottaen Van Allenin säteilyvyöhykkeen alueesta nimeltä Etelä-Atlantin anomalia, jossa säteilyvyöhyke tulee lähimmäksi Maan pintaa (noin 350-600 kilometriä Maan pinnan yläpuolella). Antiprotonit muodostuvat Maan ympärille osittain samaan tapaan kuin Maan pinnalla laboratoriossakin, kun kosmiset säteet, jotka ovat lähes valonnopeudella kulkevia hiukkasia (mm. alfaytimiä ja protoneita), törmäävät Maan ilmakehän ulko-osiin synnyttäen protoneita ja antiprotoneita. Antiprotonit jäävät kiertämään Maata vangittuina Maan magneettikenttään, kunnes ne tuhoutuvat törmätessään tavalliseen aineeseen, tyypillisesti kuljettuaan keskimäärin kymmenisen tuhatta kilometriä säteilyvyöhykkeessä. Havaittuaan 850 päivää säteilyvyöhykettä, PAMELA rekisteröi kaiken kaikkiaan 28 antiprotonia. Havaittujen antiprotonien määrä ei ehkä kuulosta kovin suurelta, mutta ottaen huomioon, että PAMELA havaitsi luotettavasti vain muutaman antiprotonin, havainnot voidaan ekstrapoloida kattamaan koko havaintoaikana säteilyvyöhykkeessä olevien antiprotonien määrä, joka on kolme kertaluokkaa suurempi kuin tähtienvälisessä avaruudessa. Näin ollen Etelä-Atlannin anomalia on rikkain antiprotonien lähde lähiavaruudessa. Vielä on epäselvää voitaisiinko antiprotoneita käyttää jotenkin hyödyksi, mutta ehkäpä tulevaisuudessa antiainetta voitaisiin kerätä luotaimien polttoaineeksi. Esimerkiksi sadan tonnin hyötykuorman lähettäminen vuoden mittaiselle matkalle Jupiteriin ja takaisin vaatisi ainoastaan alle 10 mikrogrammaa antiainetta.

Tieteellinen artikkeli

Raportti antiaineen keräämisestä ja käytöstä 

Oliko Maalla joskus kaksi kuuta?

Credit: Jutzi & Asphaug

Vaikka Kuu onkin avaruuden kappaleista meille lähin ja tutuin, sekä ainoa johon ihminen on jalallaan astunut, tutkijat ovat kiistelleet sen syntyperästä yli sata vuotta. Pikkuhiljaa vallalle on asettunut teoria, jonka mukaan Kuu syntyi, kun hypoteettinen protoplaneetta Theia törmäsi Maahan noin 50 miljoonaa vuotta Aurinkokunnan muodostumisen jälkeen. Theian törmäyksen nostattama Maa-aines kasautui vähitellen suuremmiksi kappaleiksi Maan ympärille, jotka loppujen lopuksi muodostivat Kuun. Viitteitä teorian paikkansapitävyydelle on saatu Kuusta tuoduilla näytteillä, joista mitattu hapen isotooppisuhde on lähes identtinen Maasta otettujen näytteiden kanssa. Mutta Kuulla riittää vielä mysteereitä selvitettäviksi. Esimerkiksi Kuun kääntöpuoli, joka osoittaa aina Maasta poispäin on täysin eri näköinen kuin Maahan näkyvä puoli. Meille tutumpi puolisko on tasainen, matala ja merien peitossa, kun taas Kuun kääntöpuoli on vuoristoinen ja täynnä kraatereita. Aikaisemmin tutkijat ovat selittäneet rakenteellisen eron Kuun eri puolien välillä vuorovesivoimilla. Koska Kuu on vuorovesilukkiutunut Maan kanssa, se on voinut aiheuttaa epäsymmetristä vuorovesikuumentumista, konvektiivisiä prosesseja ja merien kristalloitumista kun Kuu oli mahdollisesti vielä sulaa kiveä. Nyt tutkijat ovat kuitenkin ehdottaneet vaihtoehtoista tapaa Kuun puoliskojen erilaisuudelle. Selittääkseen rakenteellisen eron Kuun eri puolien välillä tutkijat simuloivat tilanteen, jossa Theian törmäyksen jälkeen Maan ympärille muodostui hetkellisesti kaksi kuuta. Useamman kuun pitäminen Maata kiertävillä radoilla on kuitenkin hyvin epästabiili järjestelmä, ja ennen pitkää (noin kymmenen tuhannen vuoden aikaskaalalla) se hajoaa. Mikäli toinen kuu, joka simulaation mukaan olisi halkaisijaltaan noin kolmasosa Kuusta, törmäsi hitaasti Kuuhun (eli pikemmin tarttuisi kiinni Kuuhun, kuin mäjäyttäisi sitä tuhannen päreiksi, kts. kuva yllä), se olisi voinut muodostaa samanlaiset erot Kuun pinnanmuodoissa mitä tänä päivänä havaitsemme. Koska pienemmän kuun pinta olisi vanhempaa sen jähmettyessä nopeammin kuiden muodostumisen jälkeen, kyseinen malli ennustaa, että Kuusta pitäisi löytyä eri ikäisiä kivilajeja, joten tätä teoriaa voidaan tulevaisuudessa testata. Kuun syntyperään on odotettavissa lähiaikoina lisää tietoa, kun juuri laukaistu Kuun painovoimakenttää erittäin tarkasti mittaava GRAIL -luotain pääsee perille uudenvuoden aattona.

Tieteellinen artikkeli

Kylmin tähti

Credit: NASA/JPL-Caltech/UCLA

Tavallisesti ajattelemme tähtien olevan valtavan kuumia energiapalloja, jotka fuusioimalla atomeja niiden ytimien miljoonien asteiden lämpötiloissa säteilevät energiaa ympäröivään avaruuteen. Mutta avaruus on myös täynnä tähtiä, jotka ovat ovat kylmempiä kuin keskiverto pitsauuni. Nämä nk. ruskeat kääpiöt ovat tähtiä, jotka ovat massiivisempia kuin suurimmat kaasuplaneetat, mutta eivät tarpeeksi massiivisia ollakseen täysivertoisia tähtiä. Jotta tähti pystyy fuusioimaan vetyä heliumiksi sen täytyy painaa vähintään noin 75 Jupiterin massan verran. Mikäli tähti painaa vähemmän, sen painovoima ei riitä luomaan tarpeeksi hikisiä olosuhteita tähden keskustaan, jotta vety-ytimien välinen vahva voima ylittyisi ja vedyn fuusioituminen heliumiksi pääsisi käyntiin. Fuusion sijasta tähden keskustaan syntyy painovoimaa vastustava kvanttimekaaninen paine elektronien välille. Tämä tasapainotila säilyy koko tähden loppu elämän, joten tähti hiljalleen himmenee ja jäähtyy kohti tausta-avaruuden lämpötilaa. Massiivisimmat ruskeat kääpiöt voivat syntyessään fuusioida deuteriumia ja litiumia ytimissään, mutta ne jäähtyvät suhteellisen nopeasti ja fuusio loppuu viimeistään miljardin vuoden kuluttua tähden syntymästä. Alle 13 Jupiterin massan ruskeat kääpiöt eivät ole tarpeeksi massiivisia edes fuusioimaan deuteriumia tai litiumia, ja yleisesti ottaen tätä rajaa pidetäänkin erottamaan ruskeat kääpiöt kaasuplaneetoista. Nyt tähtitieteilijät ovat löytäneet kylmimmän ruskean kääpiön (WISE 1541-2250), jonka pintalämpötila on vaivaiset 25 astetta. Tähti sijaitsee noin yhdeksän valovuoden päässä Maasta tehden siitä tähän mennessä seitsemänneksi lähimmän tähden. WISE 1541-2250 havaittiin nimensä mukaan NASA:n WISE -infrapunasatelliitilla, jonka herkät instrumentit pystyivät havaitsemaan tähdestä tulevan heikon infrapunasäteilyn (300 Kelvinin mustan kappaleen säteilyn maksimi osuu juuri infrapuna-alueelle). Varmistaakseen uuden löytönsä olevan ruskea kääpiö, tutkijat havaitsivat tähden spektriä Magellan -teleskoopilla, josta he löysivät veden ja metaanin absorptioviivoja — merkkejä ruskean kääpiön kaasukehästä. Uusi löytö osoittaa, että lähiavaruudessa voi majailla täysin uusi tähtipopulaatio, jota emme ole aikaisemmin vain huomanneet johtuen niiden kylmästä ja heikosta säteilystä. On hyvin mahdollista, että joku päivä havaitsemme tähden joka osoittautuu sijaitsevan lähempänä meitä kuin lähin tähti Proxima Centauri.

Kuvapoiminta I:

HiRISE -kameran ottama kuva maanalaisesta luolasta Marsin pinnalla. Luola on todennäköisesti laavatunneli − jäänne Marsin tuliperäisestä menneisyydestä. Jostain tuntemattomasta syystä Marsin pinta on romahtanut laavatunnelin päältä muodostaen noin 35 metriä leveän ja 20 metriä syvän aukon luolaan ja sen ympärille pienehkön kraaterin luoden vastustamattoman mysteerisen vaikutelman.

Credit: NASA/JPL/University of Arizona

Videopoiminta I:

Kiehtovaa magneettisen nesteen liikehdintää saippuakylvyssä.

Mainokset